Bachelorarbeiten

Bachelorarbeiten zu Software

Thema:Automatisches Monitoring der Datenqualität von Photonen in Belle II
Zusammenfassung: Belle II ist ein Teilchenphysikexperiment das unter anderem darauf optimiert ist, neutrale Teilchen wie Photonen zu messen. Um präzise Messungen und Suchen nach neuer Physik zu ermöglichen, muss der Detektor hierfür genau kalibriert werden. Wechselnde Beschleuniger- und Detektorbedingungen erfordern ein zuverlässiges und automatisiertes Monitoring der Energie- und Richtungsauflösung von Photonen. Im Rahmen der Bachelorarbeit soll Richtungsauflösung von Photonen in echten Daten bestimmt und automatisiert werden.
Sie lernen kennen:detector calibration, workflow management
Referent:Prof. Dr. Torben Ferber
Ansprechpartner:Alexander Heidelbach
Letzte Änderung:01.08.2024
Thema:Automated process monitoring with workflow management software towards sustainable computing
Zusammenfassung: In High Energy Physics many calculations are done on complex data. Since every calculation increases energy consumption, it is important to do these as sensible and efficient as possible. While some computing sites already provide data on the power usage of these calculations, it is still difficult to monitor the energy consumption of whole analysis workflows. In this project, an existing workflow management based on the software luigi will be extended to automatically collect data on the energy usage of its tasks.
Sie lernen kennen:workflow management software (luigi), monitoring and accounting of computing resources, databases
Referent:Prof. Dr. Torben Ferber
Ansprechpartner:Jonas Eppelt
Letzte Änderung:03.06.2024
Thema:Performance optimization for Machine Learning reconstruction algorithms
Zusammenfassung: This thesis project centers on optimizing the performance of Machine Learning (ML) reconstruction algorithms, particularly focusing on Python algorithms and their integration with C++ interfaces for the high-level trigger at Belle I running on a large computing cluster. As a bachelor student, your primary objective will be to streamline the execution of ML reconstruction algorithms on CPUs and GPUs. You will explore techniques such as algorithm parallelization, memory management, and code optimization to achieve optimal performance in both Python and C++ environments. Through rigorous benchmarking and profiling, you will evaluate the impact of your optimizations on the reconstruction speed and resource utilization. By the end of your thesis, you will have contributed to the development of robust and efficient ML reconstruction pipelines, essential for high-level trigger systems in particle physics experiments.
Sie lernen kennen:advanced track reconstruction techniques in particle physics, advanced C++ optimization
Referent:Prof. Dr. Torben Ferber
Ansprechpartner:Dr. Giacomo De Pietro
Letzte Änderung:01.08.2024