

Search for additional Higgs Bosons and BSM Higgs decays (E)

Roger Wolf

18. October 2016

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) - PHYSICS FACULTY

Higgs Boson mass

PHYSICAL
REVIEW
LETTERS.

AMERICAN STREET, 13 MAY 2015

AMERICAN SPRONG Society, ACC. Where 114, Number 19

ATLAS+CMS LHC run-1 combination:

 $125.06 \pm 0.21 \, (\mathrm{stat.}) \pm 0.19 \, (\mathrm{syst.}) \, \mathrm{GeV}$

Higgs Boson couplings

$$|f_{H\to ff}^{\text{obs}}| = \kappa_f \cdot |f_{H\to ff}^{\text{SM}}| = \kappa_f \cdot \frac{m_f}{v} \qquad f = \mu, \tau, b, t$$

$$\sqrt{\frac{|f_{H\to VV}^{\text{obs}}|}{2v}} = \sqrt{\kappa_V} \cdot \sqrt{\frac{|f_{H\to VV}^{\text{SM}}|}{2v}} = \sqrt{\kappa_V} \cdot \frac{m_V}{v} \qquad V = W, Z$$

Within measurement accuracy unique scaling as expected within the SM.

Why the Higgs boson still is not THE Higgs boson (1)

- Gravity is not included in the SM.
- The SM suffers from the hierarchy problem.
- Dark matter is not included in the SM.
- Neutrino masses are not included in the SM.
- There are known deviations from the SM expectation in $a_{\mu} \equiv \frac{g_{\mu}-2}{2}$ (3.6 σ unresolved).

 There must be physics beyond the SM!

Different levels of fine

- At what scale does it set in?
- (How) Does it influence the Higgs sector?

⁽¹⁾Arguments taken from S. Heinemeyer (HH Higgs workshop 2014)

Higgs sector in the light of (tree-level) unitarity

• Unitarity problem demonstrated for $W^+W^+ \to W^+W^+$ scattering:

$$\mathcal{M}_{gauge} = -g^2 \frac{s}{4m_W^2} + \mathcal{O}(s^0)$$

constraint

Exact cancellation of **divergent behavior** only if scalar exchange particle has coupling of type $\propto m_W^2$.

$$\mathcal{M}_H = g_{HWW}^2 \frac{s}{m_W^4} + \mathcal{O}(s^0)$$

$$g_{HWW} = \frac{2m_W^2}{v} = g \cdot m_W$$

with:
$$v = \frac{2m_W}{g}$$

Any additional contribution to this process should preserve this cancellation.

Space left for new physics in the Higgs sector

Space left: 20% @ the two sigma level.

Two signatures of new physics in the Higgs sector:

- Find signal of new Higgs bosons directly.
- Presence of new Higgs bosons usually leads to modifications of h(125) couplings.

Direct searches for $H \to \text{invisible}$

Extensions of the Higgs sector

 All what is theoretically thinkable hosted/sorted by LHC HXSWG-3 (LHC HXSWG authority of CERN YR's). Additional $SU(2)_L$ triplets.

 Georgi-Machacek model (preserves custodial sym. of SM):

$$\Phi = \left(\begin{array}{cc} \phi^{0*} & \phi^+ \\ -\phi^{+*} & \phi^0 \end{array} \right)$$

$$X = \begin{pmatrix} \chi^{0*} & \xi^{+} & \chi^{++} \\ -\chi^{+*} & \xi^{0} & \chi^{+*} \\ \chi^{++*} & -\xi^{0*} & \chi^{0*} \end{pmatrix}$$

under global $SU(2)_L \times SU(2)_R$

• Two custodial singlets (m_h, m_H) , one doublet (m_3) , one fiveplet (m_5) .

Higgs Bosons in the 2HDM

Any 2 Higgs Doublet Model (2HDM) predicts five Higgs bosons: (1)

$$\phi_{u} = \begin{pmatrix} \phi_{u}^{+} \\ \phi_{u}^{0} \end{pmatrix}, \quad Y_{\phi_{u}} = +1, \quad \mathbf{v}_{u} : \mathbf{VEV}_{u}$$

$$\phi_{d} = \begin{pmatrix} \phi_{d}^{0} \\ \phi_{d}^{-} \end{pmatrix}, \quad Y_{\phi_{d}} = -1, \quad \mathbf{v}_{d} : \mathbf{VEV}_{d}$$

$$N_{\text{ndof}} = 8 \quad -3 = 5$$

$$W, Z \quad H^{\pm}, H, h, A$$

⁽¹⁾ here shown for type-II.

Higgs Bosons in the MSSM

Any 2 Higgs Doublet Model (2HDM) predicts five Higgs bosons:

$$\phi_{u} = \begin{pmatrix} \phi_{u}^{+} \\ \phi_{u}^{0} \end{pmatrix}, \quad Y_{\phi_{u}} = +1, \quad \mathbf{v}_{u} : \mathbf{VEV}_{u}$$

$$\phi_{d} = \begin{pmatrix} \phi_{d}^{0} \\ \phi_{d}^{-} \end{pmatrix}, \quad Y_{\phi_{d}} = -1, \quad \mathbf{v}_{d} : \mathbf{VEV}_{d}$$

$$N_{\text{ndof}} = 8 \quad -3 = 5$$

$$W, Z \quad H^{\pm}, H, h, A$$

• Strict mass requirements at tree level: two free parameters: m_A , $\tan \beta = {\rm v}_u/{\rm v}_d$

$$m_{H^{\pm}}^{2} = m_{A}^{2} + m_{W}^{2}$$

$$m_{H, h}^{2} = \frac{1}{2} \left(m_{A}^{2} + m_{Z}^{2} \pm \sqrt{(m_{A}^{2} + m_{Z}^{2})^{2} - 4m_{A}^{2}m_{Z}^{2}\cos^{2}2\beta} \right)$$

$$\tan \alpha = \frac{-(m_{A}^{2} + m_{Z}^{2})\sin 2\beta}{(m_{Z}^{2} - m_{A}^{2})\cos 2\beta + \sqrt{(m_{A}^{2} + m_{Z}^{2})^{2} - 4m_{A}^{2}m_{Z}^{2}\cos^{2}2\beta}}$$

(angle btw. $v_{\rm u}$ & $v_{\rm d}$ in isospace)

The role of down-type fermions

	g_{VV}/g_{VV}^{SM}	g_{uu}/g_{uu}^{SM}	g_{dd}/g_{dd}^{SM}
\overline{A}	_	$\gamma_5\cot\beta$	$\gamma_5 an eta$
H	$\cos(\beta - \alpha) \to 0$	$\sin \alpha / \sin \beta \rightarrow \cot \beta$	$\cos \alpha / \cos \beta \rightarrow \tan \beta$
h	$\sin(\beta - \alpha) \to 1$	$\cos \alpha / \sin \beta \rightarrow 1$	$-\sin\alpha/\cos\beta \rightarrow 1$

For $m_A \gg m_Z$: $\alpha \to \beta - \pi/2$ (coupling to down-type fermions enhanced by $\tan \beta$).

Interesting production modes:

Interesting decay channels:

Upshot of LHC run-1:

Similar results (only not in single plots) from ATLAS.

tanβ

LHC run-1→ run-2

Process	$\sigma_{13{ m TeV}}/\sigma_{8{ m TeV}}$	$\delta_X/\delta_{h(125)}$
$t \overline{t}$	3.3	1.43
W	1.6	0.70
Z	1.6	0.70
WW	2.0	0.87
h(125)	2.3	1.00

LHC run-1→ run-2

Process	$\sigma_{ m 13TeV}/\sigma_{ m 8TeV}$	$\delta_X/\delta_{h(125)}$
$\overline{t}\overline{t}$	3.3	1.43
W	1.6	0.70
Z	1.6	0.70
WW	2.0	0.87
h(125)	2.3	1.00

ratios of LHC parton luminosities: 13 TeV / 8 TeV

100

James Stirling (arXiv:0901.0002)

WJS2013

H o au au decay channel

Decay Mode	BR [%]
$e u_e u_ au$	17.83
$\mu u_{\mu} u_{ au}$	17.41
1-prong ν_{τ}	37.10
3-prong ν_{τ}	15.20

- Search for 2 isolated high p_T leptons (e , μ , τ_h).
- Reduce obvious backgrounds (e.g. use \cancel{E}_T) & reconstruct $m_{\tau\tau}$.

- Inputs: visible leptons, x-, y-component of E_T .
- Free parameters: φ , θ *, $(m_{\nu\nu})$ per τ .

Search

• Search for peak(s) e.g. in (transverse) $m_{\tau\tau}$ distribution.

$H ightarrow \mu au$ LFV Higgs couplings

- SM forbids LFV couplings at tree level.
- LVF could take place in Higgs sector.

- $H \to \mu \tau_h / \mu \tau_e$ with two specialties:
 - $p_T(\mu)$ harder (\rightarrow less $\nu's$ in decay).
 - ν more collinear.

No excess, but also not same sensitivity reached, yet, as for LHC run-1.

Charged Higgs

- Expect signal in top sector:
- Most sensitive channels: $H^+ o au
 u$, $H^+ o tb$.

In decay ($m_{H^+} < m_t$):

In production ($m_t < m_{H^+}$):

Charged Higgs ($H^+ \rightarrow \tau \nu$)

• Usually restrict to τ_h (1-prong), use $m_T(\tau_h, MET)$ as discriminating variable.

Exclusion

- Chapter of low mass region already closed by LHC run-1 results.
- About to surpass LHC run-1 sensitivity in high mass regime.

Charged Higgs ($H^+ ightarrow tb$)

Select one leptonic and one hadronic W decay.

$X \rightarrow h(125)h(125)$

- In principle sensitive to $f_{h\to hh}$ (search (non-)resonant).
- Plenty of constraints due to "cascade":

μτ_h, 2jet1tag

0.025 Unpublished

0.02

0.015

0.01

0.005

 $--m_{\tau\tau bb}$

m_Hkinfit

600 m_Hreco [GeV] • Search channels according to h(125) couplings:

 $X \to h(125)h(125)$

Conclusions

- Very rich LHC run-2 BSM Higgs program of both ATLAS & CMS.
- Impossible to cover all (even in 50min) → personal selection.
- Higgs physics requires high statistics → also and esp. in BSM Higgs the most interesting results are still to come.
- Looking forward to full "LHC 2016" and "LHC 2017" datasets!

Backup

How can $SU(2)_L$ symmetry be the source of weak interactions while at the same time all interacting particles with $m \neq 0$ explicitly break this symmetry?!?

Spontaneous symmetry breaking:

symmetry breaking vacuum:

 $\mathcal{L}^{\text{Higgs}} = \partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi - V(\phi)$

 $V(\phi) = -\mu^2 \phi^{\dagger} \phi + \lambda \left(\phi^{\dagger} \phi \right)^2$

- Symmetry inherent to the system but not to its energy ground state (→ quantum vacuum).
- Excitation of vacuum ground state leads to existence of a new particle, characterized by very peculiar coupling structure, needed to preserve the symmetry of the system:

$$f_{HH\to VV} = i\frac{2m_V^2}{v^2}$$
 (Heavy Bosons quartic)

$$f_{H\to HH} = i\frac{3m_H^2}{v}$$
 (H Boson trilinear)
 $f_{HH\to HH} = i\frac{3m_H^2}{v^2}$ (H Boson quartic)

$$f_{HH\to HH} = i\frac{3m_H^2}{v^2}$$
 (H Boson quartic)

Particle masses created dynamically by coupling to non-zero vacuum.

Lagrangian Density of (baryonic)
$$y_e \left(v + \frac{H}{\sqrt{2}}\right) \overline{e}e \quad m_e = y_e \cdot v$$