

Thomas Kluge, Klaus Rabbertz, Markus Wobisch DESY University Karlsruhe Fermilab

FRONTIERS IN CONTEMPORARY PHYSICS Vanderbilt University Nashville, Tennessee 23-28, 2005

Computations of higher-order pQCD predictions for hadronic-final state observables are time-consuming

> Often need repeated computations of the same cross section for different PDFs and/or $\alpha_s(M_z)$ values

Examples for a specific analysis:

- use various PDFs (CTEQ, MRST, Alekhin, Botje, H1, ZEUS, ...)
- determine PDF uncertainties (PDF error sets)
- use data set in fit of PDFs and/or α_s

For some observables NLO predictions can be computed extremely fast (e.g.: DIS structure functions)

• ... but some are extremely slow: Drell-Yan and Jet Cross Sections

→ need new procedure for very fast repeated computations of NLO cross sections

- Can be used for any observable in hadron-induced processes (hadron-hadron / DIS / photoproduction)
- > Although labeled "fastNLO" \rightarrow can be used in any order \Rightarrow fastNⁿLO
- > Our concept does not include the theoretical calculation itself (leave this to theorists) \rightarrow it requires existing <u>flexible</u> computer code — here: NLOJET++ (Zoltan Nagy)
- During the <u>first</u> computation no time is saved need full time of the original code: hours, days, weeks, months, ... to achieve high statistical precision
- This concept involves one single approximation (see later) But: precision of approximation can be quantified & arbitrarily improved

```
Any further computation takes one second (independent of statistical precision)
```

\Rightarrow here: example for inclusive jet production in hadron-hadron collisions

Current CTEQ Procedure

k-factor approximation:

- for a given PDF \rightarrow compute k-factor for each bin: k = sigma(NLO)/sigma(LO)
- "relatively fast": compute LO cross section for arbitrary PDF
- multiply sigma(LO) with k-factor \rightarrow get "NLO" prediction

problem:

- k-factor itself depends on the PDFs $\longrightarrow \longrightarrow \longrightarrow$
- higher for gluon induced subprocesses

reason:

- different x-coverage in LO and NLO
- different k-factors for different subprocesses

limitations:

- even the LO computation is slow
- computing time depends on statistical precision

fastNLO

- as exact as you like
- much, much faster

fastNLO Jet Cross Section in hadron-hadron

General cross section formula for hadron-hadron collisions:

$$\sigma_{\rm hh} = \sum_{n} \alpha_s^n(\mu_r) \sum_{\text{PDFflavors } i} \sum_{\text{PDFflavors } j} c_{i,j,n}(\mu_r,\mu_f) \otimes f_i(x_1,\mu_f) \otimes f_j(x_2,\mu_f) \,.$$

- > strong coupling constant α_s in order n
- > perturbative coefficient $c_{i,j,n}$
- > parton density functions (PDFs) of the hadrons $f_i(x), f_j(x)$
- > renormalization scale μ_r , factorization scale μ_f , (ignore in the following $\Rightarrow \mu_{r,f} = p_T$)
- \succ momentum fraction x

Standard procedure:

- > integration over whole phase space (x_1, x_2) (usually Monte-Carlo method)
- at each MC integration point:
 - computation of observable (e.g. run jet algorithm, determine p_T , |y| bin)
 - compute perturbative coefficient
 - get α_s and PDFs values
 - \Rightarrow add contribution to bin

goal: try to separate the PDFs from the integral

PDF Approximation

introduce a set of discrete x-values labeled x⁽ⁱ⁾ (i = 0, 1, 2, ..., n)
with x⁽ⁿ⁾ < x⁽ⁿ⁻¹⁾ < x⁽ⁿ⁻²⁾ < ... < x⁽⁰⁾ = 1
around each x⁽ⁱ⁾, define an eigenfunction E⁽ⁱ⁾(x)
with E⁽ⁱ⁾(x⁽ⁱ⁾) = 1, E⁽ⁱ⁾(x^(j)) = 0 for i ≠ j and ∑_i E⁽ⁱ⁾(x) = 1 for all x

> express a single PDF f(x) by a linear combination of eigenfunctions $E^{(i)}(x)$ with coefficients given by the PDF values $f(x^{(i)})$ at the discrete points $x^{(i)}$

$$f(x) = \sum_{i} f(x^{(i)}) E^{(i)}(x)$$

PDF Approximation (2)

processes with two hadrons – need Eigenfunctions in 2d-space (x_1, x_2)

> define $E^{(i,j)}(x_1,x_2) \equiv E^{(i)}(x_1)E^{(j)}(x_2)$

Product of two PDFs $f(x_1, x_2) \equiv f_1(x_1) f_2(x_2)$ is given by

$$f(x_1, x_2) = \sum_{i,j} f(x_1^{(i)}, x_2^{(j)}) E^{(i,j)}(x_1, x_2)$$

note: this is an approximation!!

choice of triangular Eigenfunctions \implies linear interpolation of PDFs between adjacent $x^{(i)}$ this is the **only** approximation in fastNLO — precision can be arbitrarily improved!! precision depends on:

• choice of set of
$$x^{(i)}$$
 — e.g. on $\log_{10}(1/x)$ or $\sqrt{\log_{10}(1/x)}$ (needs clever choice)
• number of x-bins (brute force) \longrightarrow memory $\propto n^2$

 \Rightarrow goal: precision of 0.3% for all bins

now: don't want to deal with 13×13 PDFs!!

For hadron-hadron \rightarrow jets there are **seven** relevant partonic subprocesses:

 $qq \rightarrow jets$ $H_1(x_1, x_2)$ \propto $H_2(x_1, x_2)$ $qq \rightarrow jets$ plus $\bar{q}q \rightarrow jets$ \propto $gar{q}
ightarrow ext{jets} \quad \propto \quad H_3(x_1,x_2)$ $gq \rightarrow jets$ plus $ar{q}_i ar{q}_j
ightarrow$ jets $\propto H_4(x_1, x_2)$ $q_i q_j \rightarrow jets$ plus $ar{q}_iar{q}_i o$ jets \propto $H_5(x_1, x_2)$ $q_i q_i \rightarrow jets$ plus $q_i \bar{q}_i \rightarrow \text{jets}$ $\bar{q}_i q_i \rightarrow \text{jets} \quad \propto \quad H_6(x_1, x_2)$ plus $ar{q}_i q_j
ightarrow \mathsf{jets}$ $\propto H_7(x_1, x_2)$ $q_i \bar{q}_j \rightarrow \text{jets}$ plus

The H_i are linear combinations of PDFs \rightarrow reduced from 13×13 to seven!!

p_T (GeV)

detail:

for hadron - anti-hadron collisions:

PDFs of the anti-hadron are expressed by the PDFs of the hadron (quarks \leftrightarrow anti-quarks) here: swap $H_4 \leftrightarrow H_7$ and $H_5 \leftrightarrow H_6$

Markus Wobisch

DØ QCD WG meeting - May 4, 2005

$$egin{aligned} G(x,\mu_f) &= g(x,\mu_f) \ Q(x,\mu_f) &= \sum_i q_i(x,\mu_f) \ ar{Q}(x,\mu_f) &= \sum_i ar{q}_i(x,\mu_f) \ ar{Q}(x,\mu_f) &= \sum_i ar{q}_i(x,\mu_f) \ S(x_1,x_2,\mu_f) &= \sum_i \left(q_i(x_1,\mu_f)\,q_i(x_2,\mu_f) + ar{q}_i(x_1,\mu_f)\,ar{q}_i(x_2,\mu_f)
ight) \ A(x_1,x_2,\mu_f) &= \sum_i \left(q_i(x_1,\mu_f)\,ar{q}_i(x_2,\mu_f) + ar{q}_i(x_1,\mu_f)\,q_i(x_2,\mu_f)
ight) \end{aligned}$$

 $q_i(x)$ ($\bar{q}_i(x)$) — quark (anti-quark) density of flavor i $i = 1, ..., n_f$ — No. of flavors G(x) — gluon density

fastNLO Relevant Combinations of PDFs

$$egin{array}{rll} H_1(x_1,x_2)&=&G(x_1)\,G(x_2)\,,\ H_2(x_1,x_2)&=&\left(Q(x_1)+ar{Q}(x_1)
ight)\,G(x_2)\,,\ H_3(x_1,x_2)&=&G(x_1)\,\left(Q(x_2)+ar{Q}(x_2)
ight)\,,\ H_4(x_1,x_2)&=&Q(x_1)Q(x_2)+ar{Q}(x_1)ar{Q}(x_2)-S(x_1,x_2)\,,\ H_5(x_1,x_2)&=&S(x_1,x_2)\,,\ H_6(x_1,x_2)&=&A(x_1,x_2)\,,\ H_7(x_1,x_2)&=&Q(x_1)ar{Q}(x_2)+ar{Q}(x_1)Q(x_2)-A(x_1,x_2)\,. \end{array}$$

These are the seven combinations of PDFs, corresponding to the seven subprocesses

symmetries:

$$H_n(x_1,x_2) = H_n(x_2,x_1)$$
 for $n = 1, 4, 5, 6, 7$ and $H_2(x_1,x_2) = H_3(x_2,x_1)$

$$H_k(x_1,x_2) = \sum_{(i,j)} H_k(x^{(i)},x^{(j)}) \ E^{(i,j)}(x_1,x_2)$$

where $H_k(x^{(i)}, x^{(j)})$ is a <u>number</u> \leftrightarrow PDF information

fastNLO Jet Cross Section in hadron-hadron

With these definitions of the seven H_i the cross section reads:

$$\sigma_{ ext{hh}} = \sum_n \; lpha_s^n(\mu_r) \; \sum_{k=1}^7 \; c_{k,n}(\mu_r,\mu_f) \otimes H_k(x_1,x_2,\mu_f)$$

Now: express H_k by linear combinations of the $E^{(i,j)}(x_1,x_2)$

$$\sigma_{ ext{hh}} = \sum_n \; lpha_s^n(\mu_r) \; \sum_{k=1}^7 \; c_{k,n}(\mu_r,\mu_f) \otimes \left(\sum_{i,j} H_k(x^{(i)},x^{(j)}) \cdot E^{(i,j)}(x_1,x_2)
ight)$$

or, better:

$$\sigma_{ ext{hh}} = \sum_n \; lpha_s^n(\mu_r) \; \sum_{k=1}^7 \; \sum_{i,j} \; H_k(x_1^{(i)},x_2^{(j)}) \; \left(c_{k,n}(\mu_r,\mu_f) \otimes E^{(i,j)}(x_1,x_2)
ight)$$

important: integral is independent of PDFs! the <u>numbers</u> $H_k(x^{(i)}, x^{(j)})$ contain all information on the PDFs

\Rightarrow exactly what we wanted!!

Markus Wobisch

define:

$$ilde{\sigma}_{k,n}^{(i,j)} \, \equiv c_{k,n}(\mu_r,\mu_f) \otimes E^{(i,j)}(x_1,x_2)$$

 \Rightarrow the $ilde{\sigma}_{k,n}^{(i,j)}$ contain all information on the observable

(the perturbative coefficients, the jet definition, and the phase space restrictions).

but: $\tilde{\sigma}_{k,n}^{(i,j)}$ is independent of the PDFs and $\alpha_s -$ needs to be computed only once!

The cross section is then given by the simple product $(\rightarrow Master Formula!)$

$$m{\sigma}_{ ext{hh}} = \sum_{i,j,k,n} \; m{lpha}_s^n(m{\mu}_r) \; m{H}_k(m{x}_1^{(i)},m{x}_2^{(j)}) \; ilde{\sigma}_{k,n}^{(i,j)}$$

can be reevaluated **very** quickly for different PDFs and α_s values,

as e.g. required in the determination of PDF uncertainties or in global fits of PDFs

Markus Wobisch

to implement a new observable in fastNLO:

- find theorist to provide flexible computer code
- identify elementary subprocesses & relevant PDF linear combinations
- \succ define analysis bins (e.g. p_T , |y|)
- > define Eigenfunctions $E(x), E(x_1, x_2)$ (e.g. triangular) & the set of $x^{(i)}$
- > to optimize x-range: find lower x-limit ($x_{\text{limit}} < x < 1$) (for each analysis bin)

example: DØRun I measurement of Incl. Jet Cross Section, Phys. Rev. Lett.86, 1707 (2001)

- \blacktriangleright 90 analysis bins in (E_T,η)
- \blacktriangleright 2 orders of $lpha_s(p_T)$ (LO & NLO)
- 7 partonic subprocesses
- No. of x-intervals for each bin: 50 (100?) \leftarrow (study precision of PDF approximation) $\Rightarrow (n^2 + n)/2 = 1275$ (5050?) Eigenfunctions $E^{(i,j)}(x_1, x_2)$
- > compute 1.6M (6.4M?) variables $\tilde{\sigma}_{k,n}^{(i,j)}$ (times three, if scale variations are included) \Rightarrow stored in huge table!!!

compute VERY long to achieve very high precision — (after all: needs to be done only once!)

The Product

Everything will be downloadable from the **fastNLO** Webpage

Package for a single observable includes:

- > Tables of $\tilde{\sigma}_{k,n}^{(i,j)}$ in different orders for different scales
- Stand-Alone Code to:
 - read tables
 - Ioop over PDFs (LHAPDFlib interface or custom user interface for global fitters)
 - Y output cross section numbers as: array, ASCII, ROOT/HBOOK histograms
- > Examples

Code computes NLO Predictions for a whole set of data points in the order of seconds (depends on speed of PDF interface)

Can easily be included into user-specific analysis framework

Summary / Outlook

Status:

- concept for **fastNLO** is fully developed
- implementation of code for hadron-hadron jet cross section finished
- currently: studying precision / x-binning / "tweaking"

Outlook:

(start with inclusive jet production)

- ➤ first: provide tables and user code for published Run I results from CDF and DØ at 630 GeV and 1800 GeV — in analysis specific bins (→ data can easily be included in all PDF fits)
- next: provide tables and user code for Run II and LHC energies flexible in p_T , y
 need to know: reasonable (p_T , y) binning for LHC (?)
 - for different jet algorithms which jet algorithm(s) will be used at the LHC (?)
- Iater: extend to dijet production / Drell-Yan@NNLO / ··· ???

\Rightarrow first results by summer

NLOJET++ best program ee, ep, pp / ep,pp: 2- and 3-jet at NLO subtraction method (no dependence on phase space slicing parameter) full flexible ren, fact scales ($\mu_r = p_{T \text{ jet}}$) can compute multiple scales in single job disadvantage: slow — for large Nbin: CPU time proportional to Nbin

JETRAD: iterative optimization of PS (high statistic in regions of small x-sect)