

DPG Frühjahrstagung 2006

High pT Cross Sections with

Thomas Kluge, DESY, H1 Andreas Oehler, University of Karlsruhe, CMS Klaus Rabbertz, University of Karlsruhe, CMS Markus Wobisch, FERMILAB, D0

Klaus Rabbertz

2

Motivation Concept PDF Approximation Optimizations Some Results Outlook

Klaus Rabbertz

Motivation

- Interpretation of experiment data relies on:
 - Availability of reasonably fast theory calculations
 - Often needed: Repeated computation of same cross section
- Examples for a specific analysis:
 - Use of various PDFs (CTEQ, MRST, ...)
 - Determine PDF uncertainties (PDF error sets)
 - Use data set in fit of PDFs and/or $\alpha_s(M_7)$
- Sometimes NLO predictions can be computed fast
- But some are very slow, esp. for Drell-Yan and jets
- Need new procedure for fast repeated computations of NLO cross sections

Can be used for any observable in hadron-induced processes (hh / DIS / Photoproduction)

- Does not include theor. calculation itself (leave this to theorists!), but requires flexible computer code:
 - Here: NLOJET++ (Zoltan Nagy)
- During first computation no time saved:
 - Needs hours, days, weeks ... for high statistical precision
- Any further computation takes fractions of a second
- Involves one single approximation with quantifiable precision

Jet cross sections in hadron-hadron collisions

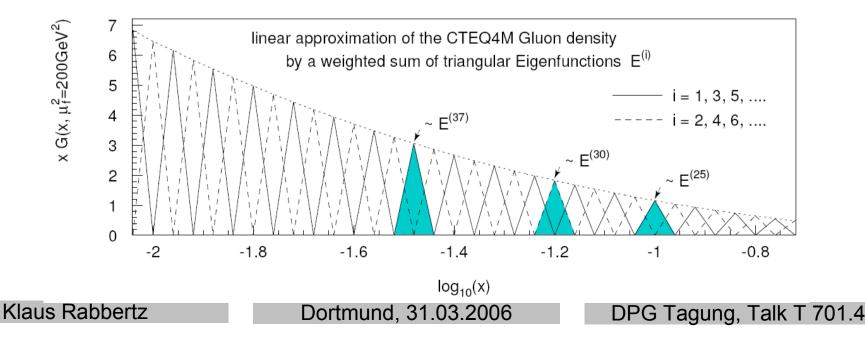
General cross section formula:

$$\sigma_{hh} = \sum_{n} \alpha_s^n(\mu_r) \sum_{\text{flavour}\,i} \sum_{\text{flavour}\,j} c_{i,j,n}(\mu_r,\mu_f) \times f_i(x_{1,\mu_f}) \times f_j(x_{2,\mu_f})$$

which depends on:

- Strong coupling constant α_s to the power of n
- Perturbative coefficients c_{i.i.n}
- Parton density functions (PDFs) of the hadrons $f_i(x)$, $f_i(x)$
- Renormalization scale μ_{r} , factorization scale μ_{f}
- Momentum fractions x
- Standard procedure: Integration over phase space in (x₁,x₂) (usually MC method) => Dependency on PDFs!
- New: Interpolation between fixed support points in x for PDFs
 => Evaluation a posteriori possible

Klaus Rabbertz



PDF Approximation

- Introduce set of discrete $x^{(i)}$ with $x^{(n)} < ... < x^{(i)} < ... < x^{(0)} = 1$
- Around each x⁽ⁱ⁾ define eigen function E⁽ⁱ⁾(x) with: $E^{(i)}(x^{(i)}) = 1, E^{(i)}(x^{(j)}) = 0 (i ≠ j), Σ_i E^{(i)}(x) = 1 \text{ for all } x$
- Express PDF f(x) by lin. combination of eigen functions with coefficients given by PDF values at discrete points:

 $f(x) = \sum_{i} f(x^{(i)}) E^{(i)}(x)$ => Integration only over $E^{(i)}(x)$, not f(x)!

- Don't want to deal with 13 X 13 PDFs
- For hh \rightarrow jets seven relevant partonic subprocesses
- 1) $gg \Rightarrow jets$ $\propto H_1(x_1, x_2)$ 2) $qg, \bar{q}g \Rightarrow \text{jets}$ $\propto H_2(x_1, x_2)$ 3) $gq, g\bar{q} \Rightarrow ext{jets}$ $\propto H_3(x_1,x_2)$ **4**) $q_i q_j, \bar{q}_i \bar{q}_j \Rightarrow \text{jets} \propto H_4(x_1, x_2)$ $q_i q_i, \bar{q_i} \bar{q_i} \Rightarrow \text{jets} \propto M_5(x_1, x_2)$ **5**) $q_i \bar{q_i}, \bar{q_i} q_i \Rightarrow \text{jets}$ $\propto H_6(x_1, x_2)$ **6**) $q_i \bar{q_j}, \bar{q_i} q_j \Rightarrow \text{jets} \propto H_7(x_1, x_2)$ 7)Need only seven linear combinations H_i of PDFs


In addition, symmetries can be exploited:

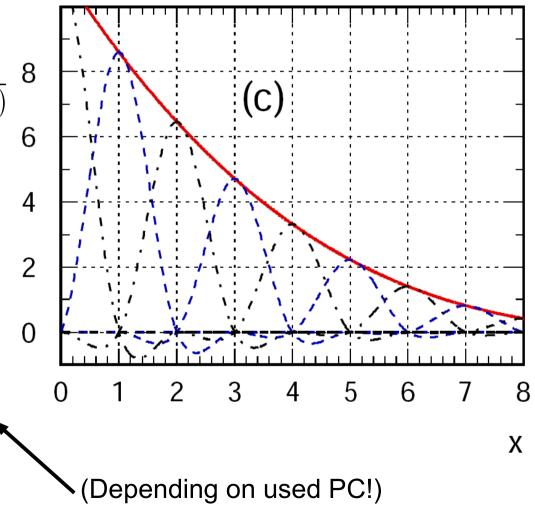
$$H_n(x_1, x_2) = H_n(x_2, x_1)$$
 for $n = 1, 4, 5, 6, 7$
 $H_2(x_1, x_2) = H_3(x_2, x_1)$

➡ For hadron anti-hadron collisions, replace: $H_4(x_1, x_2) \quad \leftrightarrow \quad H_7(x_1, x_2)$

$$H_5(x_1, x_2) \quad \leftrightarrow \quad H_6(x_1, x_2)$$

Minimize required table size and computing time!

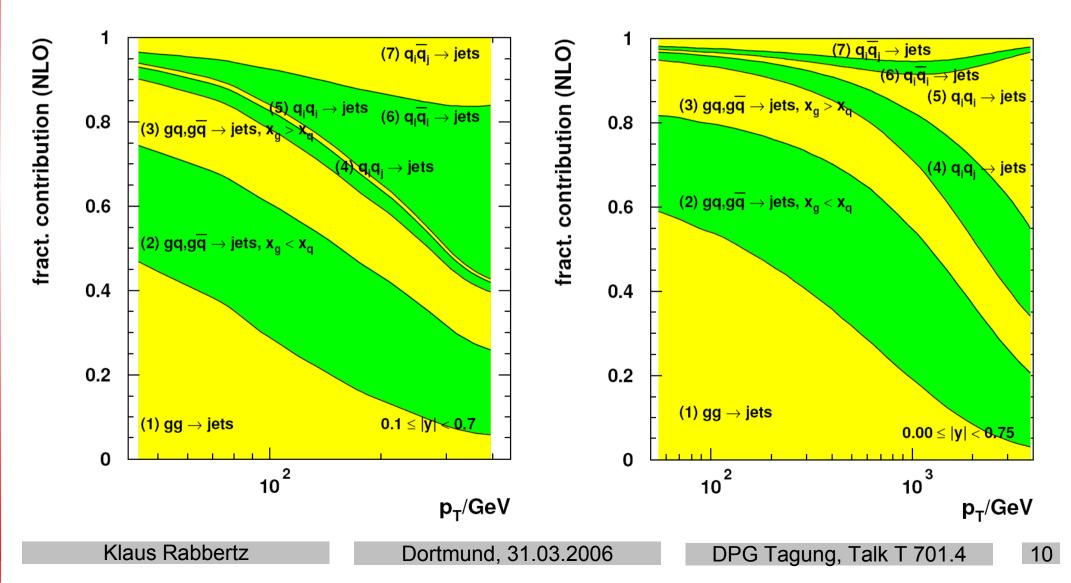
Actual Usage



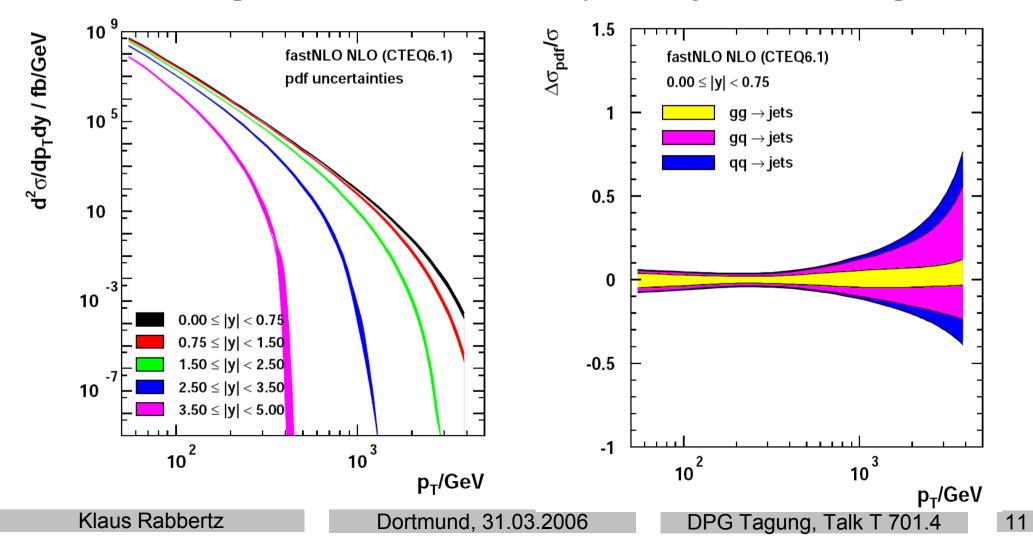
Our actual interpolation is:

- Two-dimensional (x₁,x₂)
- Bicubic, linear at the edges
- Spaced in x with points ~ $\sqrt{\log(1/x)}$

Example use case: D0 incl. jets (hep-ex/0011036) No. of bins in rap. y: 5 24 - 8No. of bins in p_{τ} : Total no. of bins: 90 No. of events (NLO): 49G CPU time for first run: > 4000h Table size (10 x bins, 4 scal.): 5.5MB Reading of table: O(1s) Execution time/PDF set: < O(0.1s)Stat. precision, y bins 1-3: 0.1 - 0.3% y bins 4,5: 0.2 - 1.0%

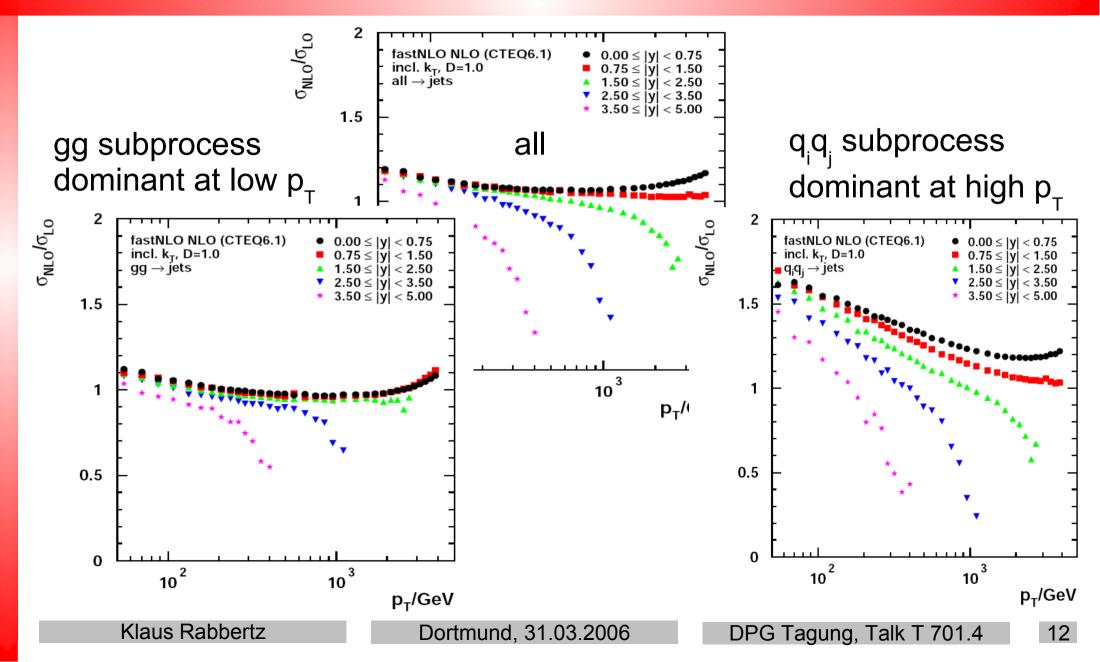

Bicubic interpolation functions

Klaus Rabbertz



Tevatron (left) and LHC (right) subprocess contributions in central rapity region

Diff. Jet Cross Section and PDF Uncertainty


LHC scenario for k_{T} Algorithm with D = 1.0, see also A. Oehlers talk T 706.9 The bands correspond to the PDF uncertainty (adding deviations in quadrature)

More Information

Φ

13

On our CEDAR web page:

Application of fastNLO to

- 6 Tevatron publications
- 3 HERA publications
- 1 RHIC scenario

Interface for interactive recomputation

Result tables + user code

Talks from TeV4LHC Workshop

Documentation

http://hepforge.cedar.ac.uk/fastnlo

Image: Solution of the set of the	<mark>stNLO :: HepForg</mark> Edit <u>V</u> iew <u>G</u> o <u>B</u> ookr					
hosted by CEDAR He Image <	🔶 - 🍠 😣 😭 💿	http://hep	oforge.cedar.ac.uk/	fastnlo/	▼ ◎ Go	
Home News Interactive Code Documentation Links fastNLO Homepage The fastNLO project provides computer code and tables of pre-computed perturbative coefficients for various observables in hadron-induced processes. new - February 27, 2006: The interactive web interface for easy access to the fastNLO code This allows very fast computations of these observables of arbitrary PDFs and/or values of PDFs and/or values of PDFs In March 2006 we will have the final release ready.	Ka 🖻 CMS 🖻 NLO 📄	CERN 🗀 G	rid 🗀 Weitere Koll	aborationen 🗀	Teilchenphysik - Organ	🗅 Städteinfo 🗀 Scienc
HomeNewsInteractiveCodeDocumentationLinksfastNLO Homepage </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>hosted by CEDAR He</td>						hosted by CEDAR He
fastNLO Homepage The fastNLO project provides computer code and tables of pre-computed perturbative coefficients for various observables in hadron-induced processes. This allows very fast computations of these observables of an abitrary PDFs and/or values of PDFs and/or values of PDFs.					O ed processes	
The fastNLO project provides computer code and tables of pre-computed perturbative coefficients for various observables in hadron-induced processes. new - February 27, 2006: The interactive web interface for easy access to the fastNLO code This allows very fast computations of these observables of processes and/or values of PDFs and/or	Home	News	Interactive	Code	Documentation	Links
	The fastNLO project provid computer code and tables pre-computed perturbative coefficients for various obse in hadron-induced processo This allows very fast comp of these observables for art	of r Pervables es. utations bitrary li	he interactive web ir March 2006 we will	iterface for easy and the final rel	ease ready.	r of ten, as compared
Thomas Kluge, Klaus Rabbertz, Markus Wobisch (send mail to the authors: fastnlo@cedar.ac.uk)			(send mail to the	aumors. lastril0@C	suar.au.uK)	

Klaus Rabbertz

14

First plan of implementation almost completed!

- LHC scenarios i.a. for CMS nearly done
- Publication in preparation
- Application to PDF fitting with LHC (simulated) data
- Clean up of code
- Implement a posteriori scale changes of µ_f (prop. by G. Salam)