

alpha-s 2024 Workshop

$\alpha_s - PDG$ average 2023

J. Huston, K. Rabbertz, G. Zanderighi (Michigan State U., KIT, MPI Munich)

ECT*, Trento, Italy, 08.02.2024

- PDG update timeline
- Criteria for inclusion in PDG α_s average
- Averaging procedure
- Average updates
- Discussion

Deadlines for review updates 2023/24

- **25th of May 23: Agreement about scope of review changes**
- 24th of August 23: Review update delivered (by authors)
- 25th of August 23: Referees identified (by PDG)
- 20th of September 23: Referee reports sent to authors
- 11th of October 23: All referee comments addressed (by authors) & sign-off (by PDG)
- 1st of December 23: PDG online web update
- **13th of March 24: Deadline for minor updates/corrections**
- 27th of March 24: Final sign-off (by PDG)
- 1st of June 24: Final PDG online update
- TBD 2024: Journal publication

Next iteration: 2025/26

Deadlines for review updates 2023/24

- **25th of May 23: Agreement about scope of review changes**
- 24th of August 23: Review update delivered (by authors)
- 25th of August 23: Referees identified (by PDG)
- 20th of September 23: Referee reports sent to authors
- 11th of October 23: All referee comments addressed (by authors) & sign-off (by PDG)
- 1st of December 23: PDG online web update QCD review on arXiv, 21.12.23
- 13th of March 24: Deadline for minor updates/corrections
- 27th of March 24: Final sign-off (by PDG)
- 1st of June 24: Final PDG online update
- TBD 2024: Journal publication

Next iteration: 2025/26

Solution in PDG α_s **Criteria for inclusion in PDG** α_s

- Published in a peer-reviewed journal before the deadline of submitting the report
- Based on the most complete perturbative QCD predictions of at least NNLO accuracy
- Accompanied by reliable estimates of all experimental and theoretical uncertainties

PDG averages 2022

ECT*, Trento, Italy, 08.02.2024

PDG α_s averaging in 6 groups

alpha-s 2024

PDG α_s averaging in 6 groups

One entry (red point) might be already an average, e.g. the first one BDP 2008-16.

Uncertainties might be combined from info in relevant publication(s), if total not explicitly given.

For each field determine unweighted average of central value and uncertainty → black dotted lines & yellow area.

Non-lattice average derived from field averages by X²-averaging method (if X²/ndof too small, increase correlation until X²/ndof ~ 1)

Derive final result from unweighted average of non-lattice average and FLAG estimate \rightarrow black dashed line & purple area

FLAG 2019 estimate from lattice calculations

PDG α_s average 2022

PDG update 2023

ECT*, Trento, Italy, 08.02.2024

alpha-s 2024

PDG α_s average 2022 \rightarrow 2023

K. Rabbertz

ECT*, Trento, Italy, 08.02.2024

alpha-s 2024

• T decay widths

- two perturbative calculations used, both valid
 - fixed-order perturbation theory (FOPT)
 - contour-improved perturbation theory (CIPT)
- finite difference between the two, α_s^{CIPT} > α_s^{FOPT}, started long debate;
 included in uncertainty estimate
- now found that CIPT cannot be combined with standard OPE to estimate nonperturbative effects → removed for now
- e⁺e⁻event shapes (thrust, C parameter)
 - analytical hadronisation corrections possible
 - but outliers with respect to MC estimated hadronisation corrections
 - now found that use of analytical model based on 2-jet configuration needs modification for 3-jet limit where α_s was extracted → removed for now

See QCD review at PDG2023 online for details and references.

K. Rabbertz

$\alpha_s(m^2_z)$ from jet data

averages per sub-field	unweighted	weighted	unweighted without subfield
$ au$ decays & low Q^2	0.1173 ± 0.0017	0.1174 ± 0.0009	0.1177 ± 0.0013
$Q\bar{Q}$ bound states	0.1181 ± 0.0037	0.1177 ± 0.0011	0.1175 ± 0.0011
PDF fits	0.1161 ± 0.0022	0.1168 ± 0.0014	0.1179 ± 0.0011
e^+e^- jets & shapes	0.1189 ± 0.0037	0.1187 ± 0.0017	0.1174 ± 0.0011
hadron colliders	0.1168 ± 0.0027	0.1169 ± 0.0014	0.1177 ± 0.0011
electroweak	0.1203 ± 0.0028	0.1203 ± 0.0016	0.1171 ± 0.0011
PDG 2023 (without lattice)	0.1175 ± 0.0010	0.1178 ± 0.0005	n/a

Final average including lattice (FLAG2021):

$$\alpha_s(m_Z^2) = 0.1180 \pm 0.0009$$

rel. uncertainty: 0.76%

K. Rabbertz

ECT*, Trento, Italy, 08.02.2024

K. Rabbertz

ECT*, Trento, Italy, 08.02.2024

PDG 2023 online updates

Online 01.12.2023

Updated 2023 review articles available

SHORTCUTS -CITATION CONTACT

ABOUT -

Reviews, Tables & Plots

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update

Files can be downloaded directly by clicking on the icon: PDF

Expand/Collapse All

Introduction, History plots, Online information

Constants, Units, Atomic and Nuclear Properties

Standard Model and Related Topics

9 Quantum chromodynamics (rev.) Electroweak model and constraints on new physics

Higgs boson physics, status of (rev.)

https://pdg.lbl.gov/2023/reviews/contents_sports.html

ECT*, Trento, Italy, 08.02.2024

alpha-s 2024

PDF

PDF

PDF

Discussion

- Some suggestions for sub-field updates from yesterday's discussion
 - Global PDF fits
 - Hadron collider observables incl. simultaneous PDF fit
 - Final-state observables
 - Independent of PDFs
 - ✓ Together with e⁺e⁻?
- Unweighted → weighted averages?
- Discussion

Backup Slides

Inclusive jets: α & *PDFs*

EFT

Simultaneous fit of α & PDFs possible combining HERA DIS & CMS jet data using xFitter Tool

CMS result for $\alpha_{s}(M_{z})$ at NNLO: $\alpha_{s}(m_{Z}^{2}) = 0.1166 \pm 0.0016$ (fitall) ± 0.0004 (scl)

Transverse energy-energy correlation

K. Rabbertz

ECT*, Trento, Italy, 08.02.2024

alpha-s 2024 20

Two goals for \alpha_s:

- 1. Measure the running of $\alpha_s(Q)$ up to the highest scales possible \rightarrow looked after $\alpha_s(Q)$!
- 2. Measure $\alpha_s(M_z)$ as precisely as possible
- → find phase space with small uncertainties: 20 – 200 GeV, central rapidity

Better in: JEC uncertainty PDF uncertainty Evolution to M_z Worse in: NP effects

$\alpha_s(M_z)$ world average versus time

$\alpha_s(M_z)$ world average versus time

$\alpha_s(M_z)$ world average versus time

