

α_s — present status and perspectives

Klaus Rabbertz (KIT)

Standard Model of Particle Physics ETP

Standard Model of Elementary Particles

and three fundamental interactions. (no gravity)

K. Rabbertz

. . .

Standard Model of Particle Physics ETE

... and three fundamental interactions. (no gravity)

K. Rabbertz

DESY, Hamburg, 14.12.2023

4

Standard Model of Particle Physics ETE

Standard Model of Particle Physics ETE

QCD and asymptotic freedom

Nobel prize 2004

Theory:

- **Renormalisation group equation (RGE)**
- Solution of 1-loop equation -
- **Running coupling constant** -

$$\alpha_s(Q^2) = \frac{\alpha_s(\mu^2)}{1 + \alpha_s(\mu^2)\beta_0 \ln\left(\frac{Q^2}{\mu^2}\right)}$$
$$\alpha_s(Q^2) = \frac{1}{\beta_0 \ln\left(\frac{Q^2}{\Lambda^2}\right)}$$

- What happens at large distances?
 - $Q^2 \rightarrow 0$?
 - Cannot be answered here! For $Q^2 \rightarrow \Lambda^2$ perturbation theory not applicable anymore!

D. Gross

- 'Strong' coupling weak for $\mathbf{Q}^2 \rightarrow \infty$, i.e. small distances
- **Asymptotic freedom**

D. Politzer

Perturbative methods usable

$$\beta_0 = \frac{33 - 2 \cdot N_f}{12\pi}$$

F. Wilczek nobelprize.org

Running coupling constant

K. Rabbertz

PDG averages

$\int \alpha_s(M_z)$ world average versus time

10

$\alpha_{s}(M_{7})$ world average versus time_{ETD}

$\alpha_s(M_z)$ world average versus time

Solution PDG α_s averaging in 6 groups

K. Rabbertz

PDG α_s average 2022

PDG update 2023

K. Rabbertz

$\alpha_s(m^2_z)$ from jet data

16

PDG 2023 online updates

Online 01.12.2023

Updated 2023 review articles available

SHORTCUTS -CITATION CONTACT

ABOUT -

Reviews, Tables & Plots

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update

Files can be downloaded directly by clicking on the icon: PDF

Expand/Collapse All

Introduction, History plots, Online information

Constants, Units, Atomic and Nuclear Properties

Standard Model and Related Topics

- 9 Quantum chromodynamics (rev.) PDF Electroweak model and constraints on new physics PDF
- Higgs boson physics, status of (rev.)

https://pdg.lbl.gov/2023/reviews/contents_sports.html

DESY, Hamburg, 14.12.2023

Synergies-EIC-LHC

PDF

PDG α_s average 2022 \rightarrow 2023

K. Rabbertz

DESY, Hamburg, 14.12.2023

Synergies-EIC-LHC

18

• T decay widths

- two perturbative calculations used, both valid
 - fixed-order perturbation theory (FOPT)
 - contour-improved perturbation theory (CIPT)
- finite difference between the two, α_s^{CIPT} > α_s^{FOPT}, started long debate;
 included in uncertainty estimate
- now found that CIPT cannot be combined with standard OPE to estimate nonperturbative effects → removed for now
- e⁺e⁻ event shapes (thrust, C parameter)
 - analytical hadronisation corrections possible
 - but outliers with respect to MC estimated hadronisation corrections
 - now found that use of analytical model based on 2-jet configuration needs modification for 3-jet limit where α_s was extracted → removed for now

See QCD review at PDG2023 online for details and references.

averages per sub-field	unweighted
τ decays & low Q^2	0.1173 ± 0.0017
$Q\bar{Q}$ bound states	0.1181 ± 0.0037
PDF fits	0.1161 ± 0.0022
e^+e^- jets & shapes	0.1189 ± 0.0037
hadron colliders	0.1168 ± 0.0027
electroweak	0.1203 ± 0.0028
PDG 2023 (without lattice)	0.1175 ± 0.0010

Final average including lattice (FLAG2021):

$$\alpha_s(m_Z^2) = 0.1180 \pm 0.0009$$

rel. uncertainty: 0.76%

K. Rabbertz

K. Rabbertz

DESY, Hamburg, 14.12.2023

Synergies-EIC-LHC 21

LHC news

Inclusive jets: α & *PDFs*

Simultaneous fit of α_s & PDFs possible combining HERA DIS & CMS jet data using xFitter Tool

CMS result for $\alpha_s(M_z)$ at NNLO: $\alpha_s(m_Z^2) = 0.1166 \pm 0.0016$ (fitall) ± 0.0004 (scl)

Reduced uncertainties of gluon PDF CMS **SM NNLO Hessian uncertainties** • g (x, Q²) $\mu_{f}^{2} = m_{t}^{2}$ CMS 13 TeV jets + HERA HERA × 60 40 20 Fract. uncert. (HERA+CMS) / HERA 0.9

 10^{-1}

Χ

10⁻²

K. Rabbertz

 10^{-3}

10⁻⁴

Inclusive jets: α_s & *PDFs*

Simultaneous fit of α & PDFs possible combining HERA DIS & CMS jet data using xFitter Tool

CMS result for $\alpha_s(M_z)$ at NNLO: $\alpha_s(m_Z^2) = 0.1166 \pm 0.0016 (\text{fitall}) \pm 0.0004 (\text{scl})$

Also NLO fit of α_{c} & PDFs & Cl Data compatible with SM \rightarrow exclusion limits $\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{2\pi}{\Lambda^2} \sum_{n \in \{1,3,5\}} c_n O_n.$ EFT SMEFT NLO 13 TeV jets & tt + HERA •••• 95% CL fit+model+param. unc. $\Lambda = 50 \text{ TeV} __{68\% \text{ CL fit+model+param. unc.}}$ - 68% CL fit unc. only Axial vector-like Vector-like Left-handed -0.002 -0.0015-0.001 -0.0005 c_1/Λ^2 [TeV⁻²]

Inclusive jets: a_s & PDFs

Simultaneous fit of α_s & PDFs possible combining HERA DIS & CMS jet data using xFitter Tool

CMS result for $\alpha_s(M_z)$ at NNLO: $\alpha_s(m_Z^2) = 0.1166 \pm 0.0016 (\text{fitall}) \pm 0.0004 (\text{scl})$

Transverse energy-energy correlation

K. Rabbertz

DESY, Hamburg, 14.12.2023

Synergies-EIC-LHC 26

Transverse energy-energy correlation

K. Rabbertz

DESY, Hamburg, 14.12.2023

Synergies-EIC-LHC 27

Transverse energy-energy correlation

K. Rabbertz

N-point E-E correlators in jets

Jet substructure variable representing correlations of energy flow inside jets

- measure 2- and 3-point energy correlators
- multiple entries, i.e. for each pair or triple inside jet

N-point E-E correlators in jets

Sudakov peak of Z p_T

EIC & LHC perspectives

DIS & structure functions

DIS & structure functions

K. Rabbertz

Solutions from Snowmass 2013

Still at LHC:

Only jets probe running α_s at highest scales

< 1% uncertainty at M_z challenging ...

Need NNLO and improved PDFs (gluon) plus some experimental optimization

Method	Current relative precision	Future relative precision	
at at abarra	$expt \sim 1\% (LEP)$	< 1% possible (ILC/TLEP)	
e e evt snapes	thry $\sim 1-3\%$ (NNLO+up to N ³ LL, n.p. signif.) [27]	$\sim 1\%~({\rm control~n.p.}$ via $Q^2{\rm -dep.})$	~10/
at a to the set of	$expt \sim 2\%$ (LEP)	< 1% possible (ILC/TLEP)	~170
e e jet lates	thry $\sim 1\%$ (NNLO, n.p. moderate) [28]	$\sim 0.5\%$ (NLL missing)	
provision FW	$expt \sim 3\% (R_Z, LEP)$	0.1% (TLEP [10]), $0.5%$ (ILC [11])	-10/
precision Ew	thry $\sim 0.5\%$ (N ³ LO, n.p. small) [9,29]	$\sim 0.3\%~({\rm N}^4{\rm LO}$ feasible, $\sim 10~{\rm yrs})$	\ /0
- decerra	expt $\sim 0.5\%$ (LEP, B-factories)	< 0.2% possible (ILC/TLEP)	
7 decays	thry ~ 2% (N ³ LO, n.p. small) [8] ~ 1% (N ⁴ LO feasible, ~ 10	$\sim 1\%~({\rm N^4LO~feasible},\sim 10~{\rm yrs})$	
on collidora	$\sim 1-2\%$ (pdf fit dependent) [30,31],	0.1% (LHeC + HERA [23])	<1%
<i>ep</i> conders	(mostly theory, NNLO) [32, 33]	$\sim 0.5\%$ (at least N^3LO required)	1 70
hadron colliders	$\sim 4\%$ (Tev. jets), $\sim 3\%$ (LHC $t\bar{t}$)	< 1% challenging	~1%
	(NLO jets, NNLO $t\bar{t}$, gluon uncert.) [17,21,34]	(NNLO jets imminent [22])	1 /0
lattice	$\sim 0.5\%$ (Wilson loops, correlators,)	$\sim 0.3\%$	~0 E 0/
	(limited by accuracy of pert. th.) [35–37]	$(\sim 5 \text{ yrs } [38])$	NU.37 0

Snowmass QCD Report, arXiv:1310.5189.

K. Rabbertz

Snowmass 2021

	Relative	$\alpha_S(m_{ m Z}^2)$ uncertainty		
Method	Current	Near (long-term) future		
	theory & exp. uncertainties sources	theory & experimental progre	SS	
(1) Lattice	0.7%	$pprox \ 0.3\% \ (0.1\%)$		
(1) Lattice	Finite lattice spacing & stats.	Reduced latt. spacing. Add more ob	servables	
	$N^{2,3}LO$ pQCD truncation	Add $N^{3,4}LO$, active charm (QED e	effects)	
		Higher renorm. scale via step-scaling to	more observ.	
(2) τ decays	1.6%	< 1.%		
(2) / decays	N ³ LO CIPT vs. FOPT diffs.	Add N ⁴ LO terms. <u>Solve CIPT FO</u>	T diffs.	
	Limited τ spectral data	Improved τ spectral functions at H	Belle II	
(2) $O\overline{O}$ bound states	3.3%	$\approx 1.5\%$		
(5) QQ bound states	$N^{2,3}LO$ pQCD truncation	Add N ^{3,4} LO & more $(c\overline{c})$, $(b\overline{b})$ bound	nd states	
	$m_{c,b}$ uncertainties	Combined $m_{c,b} + \alpha_S$ fits		
(4) DIS & PDF fits	1.7%	pprox 1%~(0.2%)		
(4) DIS & I DI 113	$N^{2,(3)}LO$ PDF (SF) fits	$N^{3}LO$ fits. Add new SF fits: $F_{2}^{p,d}$, g	g_i (EIC)	
	Span of PDF-based results	Better corr. matrices. More PDF data (L	$\mathrm{HeC/FCC}$ -eh)	
(5) e^+e^- jets & evt shapes	2.6%	\approx 1.5% (< 1%)		
(o) e e jeus a eve snapes	pes $\begin{array}{c} 2.0\% \\ \hline \approx 1.5\% \ (<1\%) \\ \hline \text{NNLO} + \text{N}^{(1,2,3)} \text{LL truncation} \\ \hline \text{Add } \text{N}^{2,3} \text{LO} + \text{N}^{3} \text{LL, power corrections} \\ \end{array}$	ctions		
	Different NP endytical & PS corrs.	Improved NP corrs. via: NNLL PS, §	grooming	
	Limited datasets $\mathbf{w}/$ old detectors	New improved data at B factories (1	FCC-ee)	
(6) Electroweak fits	2.3%	$(\approx 0.1\%)$		
(0) Electroweak fits	$N^{3}LO$ truncation	N ⁴ LO, reduced param. uncerts. ($m_{W,Z}$, α , CKM)		
	Small LEP+SLD datasets	Add W boson. Tera-Z, Oku-W dataset	s (FCC-ee)	
(7) Hadron colliders	2.4%	$\approx 1.5\%$		
(1) Hadron conders	$\rm NNLO(+NNLL)$ truncation, PDF uncerts.	N ³ LO+NNLL (for color-singlets), impr	roved PDFs	
	Limited data sets ($t\bar{t}$, W, Z, e-p jets)	Add more datasets: Z $p_{\rm T},$ p-p jets, $\sigma_i/$	σ_j ratios,	
World average	0.8%	pprox 0.4% (0.1%)	Snowmass 2021 arXiv:2203	.08271
K. Rabbertz	DESY, Hamburg	ı, 14.12.2023	Synergies-EIC-LHC	38

Two goals for α_s :

- 1. Measure the running of $\alpha_s(Q)$ up to the highest scales possible \rightarrow looked after $\alpha_s(Q)$!
- 2. Measure $\alpha_s(M_z)$ as precisely as possible
- → find phase space with small uncertainties: 20 – 200 GeV, central rapidity

Better in: JEC uncertainty PDF uncertainty Evolution to M_z Worse in: NP effects

K. Rabbertz

- LHC at 7, 8, and 13 TeV enabled to test $\alpha_s(Q)$ up to $Q \sim 2 \text{ TeV}$
- LHC results reached $\Delta \alpha_s(M_z) \sim 0.5\%$ experimentally
- LHC theory uncertainty still leads to $\Delta \alpha_s(M_z) \sim 1.5\%$ in total (except one)
- Theory at full N3LO desperately needed
- Lattice gauge reached $\Delta \alpha_s(M_z) \sim 0.6\%$, has potential for permille level
- With N3LO great potential for Δα_s(M_z) < 0.5% from DIS, structure functions and jets at EIC (& LHeC)</p>

Backup Slides

New LHC results

Exp.	√s / TeV	Lumi / fb ⁻¹	Theory	Obs.	α _s (M _z)	Δα _s exp	∆α _s oth	∆α _s scale	Ref.
CMS	13	33.5	NNLO	Jet pT	0.1166	14 (NP)	7	4	JHEP1 2(2022) 035
ATLAS	13	139	NNLO	TEEC	0.1175	6	12	+32 -11	JHEP0 7(2023)085
ATLAS	13	139	NNLO	ATEE C	0.1185	9	12	+22 -2	JHEP0 7(2023)085
CMS	13	36.3	NNLO	2D m _{ij}	0.1201	12 (NP)	9	8	SMP- 21-008
CMS	13	36.3	NNLO	3D m _{ij}	0.1201	10 (NP)	10	5	SMP- 21-008
ATLAS	8	20.2	N4LLa + FO	Z рТ	0.1183	4	7	4	arXiv:2 309.12 986
K. Rabbertz DESY, Hamburg, 14.12.2023 Synergies-EIC-LHC 4									