

QCD and Jets at the LHC

V03 – From jet measurements to SM parameters (or new physics)

Herbstschule Maria Laach

Klaus Rabbertz

Outline

- Inclusive jet measurement in details
- More on jets
 - Dijet cross section
 - Ratios & normalised distributions
- The strong coupling constant

Outline

- Inclusive jet measurement in details
- More on jets
 - Dijet cross section
 - Ratios & normalised distributions
- The strong coupling constant

Hot topics I could not cover:

- Years of substructure analyses for q/g separation or boosted heavy particles
 - Lund jet plane analysis (C/A declustering)
- Flavor jets

Abundant production of jets:

Jets at hadron colliders provide the highest reach ever to determine the strong coupling constant at high scales Q

Also learn about hard QCD, the proton structure, non-perturbative effects, and electroweak effects at high Q

Jets at the LHC

Abundant production of jets:

Extract α_s(M_z), the least precisely known fundamental constant!

- Useful for i.a.:
 - Determination of α_s(M_z) in single-parameter fit
 - Test consistency of running of $\alpha_s(Q)$
 - Multi-parameter fit of $\alpha_s(M_z)$ & PDFs
 - Multi-parameter fit including EFT parameters
- Subject to all systematic uncertainties: JEC, JER, MHOU, luminosity, ...

All inclusive

Large transverse momenta

Maria Laach, 14.09.2023

Response matrix

Inclusive jets: cross section

Overall agreement with NNLO x NP x EW Over many orders of magnitude Even beyond 2 TeV in jet p_{τ} and for rapidities |y| up to 2

Ratio to NLO x NP x EW for |y| < 0.5

anti-k,, R=0.7, 13 TeV

Progress in theory: NLO EW

Event display from MC generator

Klaus Rabbertz

Maria Laach, 14.09.2023

54. Herbstschule 2023

Inclusive jets: exp. uncertainties

Of the order of 5%, larger at high y and p_T Dominated by JES uncertainty (also JEC) Except at highest $p_T \rightarrow$ statistical uncertainty

Inclusive jets: theory corrections

anti-kt, R=0.7, 13 TeV

Nonperturbative correction factors:

- estimated from tuned MC event generators
- strongly dependent on jet size R
- less important at high p_{T}

Electroweak correction factors:

- calculated perturbatively
- strongly dependent on jet rapidity y
- very important at high $\boldsymbol{p}_{_{T}}$

Inclusive jets: theory corrections

anti-kt, R=0.4, 13 TeV

Nonperturbative correction factors:

- estimated from tuned MC event generators
- strongly dependent on jet size R
- less important at high $\boldsymbol{p}_{_{T}}$

Electroweak correction factors:

- calculated perturbatively
- strongly dependent on jet rapidity y
- very important at high $\boldsymbol{p}_{_{T}}$

- ✤ pert (Parton shower) ln(R) + O(1)
- h (Hadronisation) scales with

$$-rac{1}{R}+\mathcal{O}(R)$$

➡ UE (Multiple Parton Interactions) scales with $R^2 + O(R^4)$

Dasgupta, Magnea, Salam, JHEP02 (2008) 055.

Maria Laach, 14.09.2023

Recent investigation on R dep.

Relative difference between predictions of MC generator NLO+PS+MPI+HAD and NLO

Difference smallest for R around 0.7 – 1.0 \rightarrow sweet spot!

Bellm et al., EPJC 80 (2020) 93.

Klaus Rabbertz

Maria Laach, 14.09.2023

All uncertainty components in fit incl. correlations! Scale and NP uncertainty via extra fits \rightarrow offset method

Klaus Rabbertz

Maria Laach, 14.09.2023

Inclusive jets: α_s

Sensitivity to $\alpha_s(M_z)$ at NLO

- CMS: anti- $k_t R = 0.7$ at $\sqrt{s} = 8 TeV$
- QCD scale choice: $\mu_R = \mu_F = p_{T,jet}$

X^{2} fit of $\alpha_{s}(M_{z})$ for all jet p_{τ} and |y| bins

- In fit: all exp. + PDF + NP uncertainties
- PDFs: CT10 NLO PDF sets for various $\alpha_s(M_z)$

Example from older analysis at 8 TeV!

MS

Jet cross section to all orders in perturbative QCD:

$$\sigma(pp \to jj + X) \propto \sum_{n=2}^{\infty} c_n(\mu_r) \alpha_s^n(\mu_r)$$

LO Coefficient, here c_2 independent of scale μ_r : $c_2(\mu_r) \equiv c_2$ Coefficients of higher orders depend on μ_r and renorm.- scheme, e.g.:

M

Infinite series independent of μ_r :

 $\mu_r^2 \frac{d}{d\mu_r^2} \sum_{n=2}^{\infty} c_n(\mu_r) \alpha_s^n(\mu_r) = 0$

Not so the truncated one!

$$\mu_r^2 \frac{d}{d\mu_r^2} \sum_{n=2}^N c_n(\mu_r) \alpha_s^n(\mu_r) \propto \mathcal{O}\left(\alpha_s^{N+1}(\mu_r)\right)$$

$$c_3(Q) = c_3(1) + \frac{\beta_0}{2\pi} \ln\left(\frac{\mu_r}{Q}\right) c_2$$

So for example:

Klaus Rabbertz

Maria Laach, 14.09.2023

- \rightarrow Large LO scale dependence ~ $\alpha_s(\mu_r)$
- \rightarrow Increasingly compensated by further terms \rightarrow Recipe(!): Estimate impact of higher orders by μ_r variation

Can go wrong, if e.g.: 1) Base scale badly chosen

Scale is: p_T leading jet: p_{T1} Looks much better, if respective jet pT is used!

Example plot of dep.: inklusive Jets, $gg \rightarrow jets$

Gehrmann-De Ridder, Gehrmann, Glover, Pires, Phys. Rev. Lett., 2013, 110, 162003

54. Herbstschule 2023

- Can go wrong, if e.g.:
- 1) Base scale badly chosen

2) In multi scale problems, e.g. Z+jet production

V = W, Z

 $V^*(k)$

- 1) Base scale badly chosen
- 2) In multi scale problems, e.g. Z+jet production
- 3) New production channels or graph types appear

Process: Higgs radiation: $pp \rightarrow HV + X$ **Scale choice:** М_{нv} Scale variation $\mu_{r,f}/M_{HV}$: 1/3 ... 3

M_H

Constraining PDFs

Klaus Rabbertz

Maria Laach, 14.09.2023

54. Herbstschule 2023

Measurement of inclusive jets at large pT impacts:

- Gluon density at large x (> 0.1)
- Quark density at large x (> 0.3)

Works nicely with statistical ensemble uncertainties of NNPDF!

Inclusive jets: α_s & *PDFs*

Simultaneous fit of α_s & PDFs possible combining HERA DIS & CMS jet data using xFitter Tool

CMS result for \alpha_{s}(M_{z}) at NNLO: $\alpha_{s}(m_{z}^{2}) = 0.1166 \pm 0.0016 (\text{fitall}) \pm 0.0004 (\text{scl})$

xFitter (HERAFitter): Alekhin et al., EPJC 75 (2015) 304.

Klaus Rabbertz

Maria Laach, 14.09.2023

Simultaneous fit of α_s & PDFs possible combining HERA DIS & CMS jet data using xFitter Tool

CMS result for \alpha_{s}(M_{z}) at NNLO: $\alpha_{s}(m_{z}^{2}) = 0.1166 \pm 0.0016 (\text{fitall}) \pm 0.0004 (\text{scl})$

Large masses

Maria Laach, 14.09.2023

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}y_{\max}\mathrm{d}m_{1,2}} = \frac{1}{\varepsilon \,\mathcal{L}_{\mathrm{int}}} \,\frac{N}{(2\,\Delta|y|_{\max})\Delta m_{1,2}}.$$

Comparison to NNLO

Illustration of dijet event topologies

Double/Triple-differential dijets

New physics ?

"The data are compared with QCD predictions for various sets of parton distribution functions. The cross section for jets with E_T >200 GeV is significantly higher than current predictions based on $O(\alpha_s^{-3})$ perturbative QCD calculations. ..."

Explained by better adaptation of gluon density in proton! \rightarrow g(x,Q²)

CDF Run 1: Phys.Rev.Lett. 77 (1996)

Klaus Rabbertz

Maria Laach, 14.09.2023

New physics ? Not yet.

Explained by better adaptation of "The data are compared with QCD predictions for gluon density in proton! \rightarrow g(x,Q²) various sets of parton distribution functions. Today: The cross section for jets with E_{τ} >200 GeV is Significantly improved determination significantly higher than current predictions based on $O(\alpha_s^3)$ perturbative QCD calculations. ..." of uncertainties % Difference (nb/GeV) **CDF 1996** |v^{JET}|<0.1 0.1<|y^{JET}|<0.7 125 l/∆դ∫ d²ơ/(dE_rdղ) dղ CDF 100 NLO QCD 75 CTEQ6.1M 0.7<|y^{jet}|<1.1 1.1<|y^{JET}|<1.6 50 5 25 Ratio 1 0 200 400 600 p_JET [GeV/c] 1.6<|y^{JET}|<2.1 -25 CDF CTEO 2M K_T D=0.7 MRSA' CTEO 2ML CDF data ($L = 1.0 \text{ fb}^{-1}$) Systematic uncertainties MRSG **GRV-94** -50 PDF uncertainties $\mu = 2 \times \mu_0 = \max p_{\tau}^{\text{JET}}$ 200 400 600 -75 **MRST2004** Sum of correlated systematic uncertainties p_TET [GeV/c] -100 50 100 250 450 150 200 300 350 400 Jet Transverse Energy (GeV) CDF Run 2: PRD 75 (2007) 092006 CDF Run 1: Phys.Rev.Lett. 77 (1996)

Klaus Rabbertz

Maria Laach, 14.09.2023

54. Herbstschule 2023

No sign of new physics so far

Ratio of data over theory for a large number of inclusive jet datasets

50 years of QCD, arXiv:2212.11107.

54. Herbstschule 2023

Experimental data in CT18 PDFs

Higher multiplicity

- Determination of α_s(Mz) in single-parameter fit
- Test running of $\alpha_s(Q)$ (reduced PDF dependence)
- Some reduction in sensitivity
- But cancellation of many systematic effects
- More scale choices

- Examine radius dependence of jet cross section:
 - "LO" two partons in opposite directions
 - ➡ Always two jets, independently of algorithm → ratio trivially unity
 - First non-trivial order needs THREE partons
 - → 3-jet observable, LO corresponds to NLO dijet production \rightarrow NLOJet++

Definition:

$$\left(\frac{\mathrm{d}\sigma^{\mathrm{alt}}}{\mathrm{d}p_{\mathrm{T}}} - \frac{\mathrm{d}\sigma^{\mathrm{ref}}}{\mathrm{d}p_{\mathrm{T}}}\right) / \left(\frac{\mathrm{d}\sigma^{\mathrm{ref}}}{\mathrm{d}p_{\mathrm{T}}}\right) = \mathscr{R}(\mathrm{alt}, \mathrm{ref}) - 1$$

3-Jet NLO 2-Jet NLO

- "alt" and "ref" could be two different jet algorithms
 - ZEUS e.g. investigated kT, anti-kT and SISCone

ZEUS, PLB691 (2010) 127.

ALICE + CMS: Two different jet radii for anti-kT

Jet radius ratios

Dijet azimuthal decorrelation

Determine $\alpha_s(Q)$ from additonal parton branchings separated in Φ around the two leading jets. Binning in sum of scalar transverse momentum H_T and rapidity separation y^{*}.

$$R_{\Delta\phi}(H_T, y^*; \Delta\phi_{\max}) = \frac{\frac{d^2\sigma_{\text{dijet}}(\Delta\phi_{\text{dijet}} < \Delta\phi_{\max})}{dH_T dy^*}}{\frac{d^2\sigma_{\text{dijet}}(\text{inclusive})}{dH_T dy^*}}$$

 $R_{\Delta\phi} \propto \alpha_s$

 $\Delta \phi_{\text{dijet}} = \pi$

c) $2 \rightarrow 4$ $2 \rightarrow 4$ $3 \rightarrow 4$ $3 \rightarrow 4$ $0 \leq \Delta \phi_{\text{dijet}} \leq \pi$

Klaus Rabbertz

2

Maria Laach, 14.09.2023

54. Herbstschule 2023

Wobisch et al., JHEP 01 (2013) 172; KR, M. Wobisch, JHEP 12 (2015) 024.

$R_{\Delta\phi}$ in bins of $Q = H_{T}/2$

3- to 2-jet ratios

Klaus Rabbertz

Maria Laach, 14.09.2023

54. Herbstschule 2023

Sensitivity vs. systematic effects

Running of $a_s(Q)$ (CMS style)

Pros & cons similar as for cross section ratios ...

- Determination of $\alpha_s(M_z)$ in single-parameter fit
- Test running of $\alpha_s(Q)$ (reduced PDF dependence)
- Some reduction in sensitivity
- But cancellation of many systematic effects
- More scale choices

Transverse energy-energy correlation

Transverse energy-energy correlation

Ratios to NLO

3.jet NNLO: Czakon, Mitov, Poncelet, PRL 127 (2021) 152001.

Klaus Rabbertz

Maria Laach, 14.09.2023

54. Herbstschule 2023

NLO

NNLO

Running of $\alpha_{s}(Q)$ (ATLAS style)

57

Standard Model of Elementary Particles

and three fundamental interactions. (no gravity)

<18.2 MeV/c²

ντ

tau

neutrino

0

1⁄2

<0.17 MeV/c²

Vμ

muon

neutrino

0

1/2

Klaus Rabbertz

<1.0 eV/c²

1⁄2

Ve

electron

neutrino

Cush, Wikipedia.

. . .

Maria Laach, 14.09.2023

≈80.39 GeV/c²

M

W boson

/ECTOR

(7)

A D

+1

... and three fundamental interactions. (no gravity)

Klaus Rabbertz

Maria Laach, 14.09.2023

$\alpha_{s}(M_{z})$ world average versus time

61

1st estimate from G. Altarelli

$\alpha_{s}(M_{z})$ world average versus time

PDG α_s average 2022

Klaus Rabbertz

$\alpha_s(m^2_z)$ from jet data

Thank you for your attention!

Thank you very much to the organisers for the invitation to this very special place

