QCD and Jets at the LHC

V01 - QCD: From quarks \& gluons to jets

Herbstschule
Maria Laach

Klaus Rabbertz

Outline

- Historic recap
- Quarks and gluons
- Event shapes
- Jets

The subnuclear zoo 1957

First of the PDG Reviews 1957

Authors:

M. Gell-Mann
A. Rosenfeld

Masses and Lifetimes of Elementary Particles

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& Particle \& Spin \& \begin{tabular}{l}
Mass \\
(Errors represent standard deviation) (Mev)
\end{tabular} \& Mass difference (Mev) \& Mean life (sec) \& Decay rate (number per second) \\
\hline tons \& \(\gamma\) \& 1 \& 0 \& \& stable \& 0.0 \\
\hline tons and 1tileptons \& \(\nu, \bar{\nu}\)
\(e^{\nu}, e^{+}\)
\(\mu^{-}, \mu^{+}\) \& 年 \& \[
\begin{aligned}
\& 0 \\
\& 0.510976^{*} \\
\& 105.70 \pm 0.06^{*}
\end{aligned}
\] \& \& \begin{tabular}{l}
stable \\
stable
\[
(2.22 \pm 0.02) \times 10^{-6 *}
\]
\end{tabular} \& \[
\begin{array}{|l|}
\hline 0.0 \\
0.0 \\
0.45 \times 10^{6}
\end{array}
\] \\
\hline ons \& \[
\begin{aligned}
\& \pi^{ \pm} \\
\& \pi^{0} \\
\& K^{ \pm} \\
\& K^{0}
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \\
\& 0 \\
\& 0 \\
\& 0
\end{aligned}
\] \& \[
\left.\begin{array}{ll}
139.63 \& \pm 0.06^{*} \\
135.04 \& \pm 0.16^{*} \\
494.0 \& \pm 0.20(\mathrm{a}) \\
\& \\
493 \& \pm 5(\mathrm{Th})
\end{array}\right\}
\] \& \(4.6 *\)
\(1 \pm 5\) \& \[
\begin{aligned}
\&(2.56 \pm 0.05) \times 10^{-8} \\
\&(0.0<\tau<0.4) \times 10^{-16}(\mathrm{O}) \\
\&(1.224 \pm .013) \times 10^{-8}(\mathrm{~b}) \\
\& K_{1}:(0.95 \pm .08) \times 10^{-10}(\mathrm{P}) \\
\& K_{3}:(3<\tau<100) \times 10^{-8}(\mathrm{~L})(\mathrm{P})
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.39 \times 10^{8} \\
\& >2.5 \times 10^{15} \\
\& 0.815 \times 10^{8} \\
\& 1.05 \times 10^{10} \\
\& (>0.01<0.3) \times 10^{8}
\end{aligned}
\] \\
\hline 'ons \(\dagger\) \& \(p\)
\(n\)
\(\Lambda\)
\(\Sigma^{+}\)
\(\Sigma^{-}\)
\(\Sigma^{0}\)

Z^{-}

$Z z^{0}$ \& \& \& | 7.1 ± 0.4 |
| :--- |
| $7.6 \mathbf{z}_{2}+3$ | \& stable

$$
\begin{aligned}
& (1.04 \pm 0.13) \times 10^{+3} \\
& (2.77 \pm 0.15) \times 10^{-10}(\mathrm{~d}) \\
& (0.78 \pm 0.074) \times 10^{-10}(\mathrm{e}) \\
& (1.58 \pm 0.17) \times 10^{-10}(\mathrm{f}) \\
& (<0.1) \times 10^{-10}(\mathrm{~A}) \\
& \text { theoretically } \sim 10^{-19} \\
& (4.6<\tau<200) \times 10^{-10}(\mathrm{Tr}) \\
& ?
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 0.0 \\
& 0.96 \times 10^{-8} \\
& 0.36 \times 10^{10} \\
& 1.28 \times 10^{10} \\
& 0.64 \times 10^{10} \\
& >10 \times 10^{10} \\
& \text { theoretically } \sim 10^{19} \\
& (>0.005,<0.2) \times 10^{10}
\end{aligned}
$$
\]

\hline
\end{tabular}

From compilations by Cohen, Crowe, and DuMond, Nuovo cimento, 5, 541 (1957), and "Fundamental Constants of Physto be published by Interscience, New York, 1957. They include all data available before January 1, 1957.

M.Gell-Mann, A. Rosenfeld, Ann.Rev.Nucl.Sc. 7 (1957) 407-478.

New hadrons just at LHC

P. Traczyk, CERN, on phys.org

Order to chaos

- Cosmic ray \& accelerator experiments 1947-1970
\Rightarrow many new "elementary" particles?! And some with "flavor"
- M. Gell-Mann, 1964: Eightfold Way
\rightarrow order known particles of equal spin into multiplets of charge q and "strangeness" s

Nobel prize 1969

Mesons spin 0
$s=1$
$s=0$
$s=-1$

charge q

$$
q=-1 \quad q=0
$$

Baryons spin $1 / 2$
charge q

$$
q=-1 \quad q=0
$$

strangeness s

And new quantum numbers

- $J=3 / 2$ fermions with symmetric space, spin and flavor wave function
* Spin-statistics-problem: Contradiction to Pauli's exclusion rule!
- A way out:
\rightarrow O.W. Greenberg, 1964: Additional degree of freedom "color"
M. Gell Mann, 1972: Criginally the names
\rightarrow M. Gell-Mann, 1972: Color = tristate, RedGreenBlue solv were red, blue \& white

At Rochester conference (ICHEP) 1962, also Y. Ne'eman

Great progress, but no dynamics yet.

Wikipedia

Quark-Parton-Model

- M. Gell-Mann: Mesons: quark-antiquark pairs

> Baryons: three "quarks"
(J. Joyce "Finnegan's Wake": "Three quarks for Muster Mark.")

- G. Zweig: Analogous idea, his name "aces" did not stick.
* Quarks/Aces seen as hypothetical mathematical constructs; charges coming in thirds were never observed
- R. Feynman: Measurements of deep-inelastic electron-proton scattering at the SLAC-MIT experiment explained:
Point-like scattering centres inside the protons: "partons"
* Later: Identification of the partons with (anti-)quarks and gluons

Sakurai prize 2015

Nobel prize 1965 for QED with J. Schwinger, S.-I. Tomonaga

Scale invariance

- Inelastic >> elastic cross section
- Inelastic cross section ~ const. • Mott x section
* approximately independent of resolution $\sim q^{2}$
* scale invariant, i.e. no natural length scale
\Rightarrow like scattering at point-like objects
Deep-inelastic scattering (DIS) $\mathrm{P}(\mathrm{P}) \xrightarrow{\longrightarrow}$
more on this later ...
PRL 23 (1969) 935.

More evidence for "color"

Hadronic branching ratio in $\quad R(s)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons,s }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}, s\right)}$
elektron-positron annihilation

More evidence for "color"

Hadronic branching ratio in elektron-positron annihilation

$$
R_{\mathrm{uds}}=3 \cdot\left(\frac{4}{9}+\frac{1}{9}+\frac{1}{9}\right)=2
$$

$$
\begin{gathered}
R(s)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }, s\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}, s\right)}=3 \cdot \sum_{\mathrm{q}} Q_{q}^{2} \\
\text { Color factor } \mathbf{N}_{\mathrm{c}}
\end{gathered}
$$

More evidence for "color"

Hadronic branching ratio in elektron-positron annihilation

$$
\begin{gathered}
R(s)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }, s\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}, s\right)}=3 \cdot \sum_{\mathrm{q}} Q_{q}^{2} \\
\text { Color factor } \mathbf{N}_{\mathrm{c}}
\end{gathered}
$$

$$
R_{\mathrm{uds}}=3 \cdot\left(\frac{4}{9}+\frac{1}{9}+\frac{1}{9}\right)=2
$$

R

More evidence for "color"

Hadronic branching ratio in elektron-positron annihilation

$$
R_{\mathrm{uds}}=3 \cdot\left(\frac{4}{9}+\frac{1}{9}+\frac{1}{9}\right)=2
$$

$$
\begin{array}{r}
R(s)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }, s\right.}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}, s\right)} \\
\text { Color factor } \mathbf{N}_{\mathrm{c}}
\end{array}
$$

More evidence for "color"

Pion decay rate into two photons

LO amplitude of the decay
Color factor $\mathbf{N}_{\mathbf{c}}$

Decay constant (from charged pions)

Evaluation from independent

$$
\begin{aligned}
& \Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=7.33 \mathrm{eV}\left(\frac{N_{c}}{3}\right)^{2} \\
& \text { oles: }
\end{aligned}
$$

Measurement:

$$
\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=7.84 \pm 0.56 \mathrm{eV}
$$

More evidence for "color"

Pion decay rate into two photons

LO amplitude of the decay
$\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=N_{c}^{2}\left(Q_{u}^{2}-Q_{d}^{2}\right)^{2} \frac{\alpha^{2} m_{\pi}^{3}}{64 \pi^{3} f_{\pi}^{2}}$
Attention, not the only choice!

$$
N_{c}=1, Q_{u}=1, Q_{d}=0 \ldots
$$

Evaluation from independent

$$
\begin{aligned}
& \Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=7.33 \mathrm{eV}\left(\frac{N_{c}}{3}\right)^{2} \\
& \text { bles: }
\end{aligned}
$$

Measurement:

$$
\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)=7.84 \pm 0.56 \mathrm{eV}
$$

QCD Lagrangian

- Covariant derivative: $\left(D_{\mu}\right)_{a b}=\partial_{\mu} \delta_{a b}+i g_{s} \tau_{a b}^{A} \mathcal{A}_{\mu}^{A}$

Field strength tensors:

$$
\mathcal{G}_{\mu \nu}^{A}=\partial_{\mu} \mathcal{A}_{\nu}^{A}-\partial_{\nu} \mathcal{A}_{\mu}^{A}-g_{s} f^{A B C} \mathcal{A}_{\mu}^{B} \mathcal{A}_{\nu}^{C}
$$

\rightarrow leads to triple (TGC) and quartic (QGC) gauge couplings

$$
\mathcal{L}_{\mathrm{QCD}}=\sum_{q} \bar{\psi}_{a}\left(i \gamma^{\mu}\left(D_{\mu}\right)_{a b}-m_{q}\right) \psi_{b}-\frac{1}{4} \mathcal{G}_{\mu \nu}^{A} \mathcal{G}_{A}^{\mu \nu}
$$

The gluon remains massless $\rightarrow \mathbf{S U}(3)_{\mathrm{C}}$ exact symmetry of nature!

QCD Lagrangian

- Invariance under local SU(3) ctransformations
\rightarrow Three color charges $\mathrm{a}=1,2,3 \rightarrow$ Red, Green, Blue (as analogue to electric charge in QED)
\rightarrow Eight vector fields (gluons) \mathcal{A}_{μ}^{A} carry color charge and color anti-charge
* The gluons are massless
\rightarrow exact symmetry
\rightarrow in principal infinite range of strong force

$$
\mathcal{G}_{\mu \nu}^{A}=\partial_{\mu} \mathcal{A}_{\nu}^{A}-\partial_{\nu} \mathcal{A}_{\mu}^{A}-g_{s} f^{A B C} \mathcal{A}_{\mu}^{B} \mathcal{A}_{\nu}^{C}
$$

* Non-zero commutator leads to gluon self-interactions via triple and quartic gauge couplings

Quantum corrections

- Quark (left) and gluon (middle \& right) self-energy corrections:

Not in QED!

- Quark-gluon vertex corrections:

\rightarrow lead to anti-screening

Beta functions

- In (renormalisable) QFT the beta function encodes the dependence of the coupling parameter g on the energy (or distance) scale μ :
$\alpha_{i}:=\frac{g_{i}^{2}}{4 \pi}$

$$
\beta(g)=\frac{\partial g}{\partial \log \left(\mu^{2}\right)}
$$

Beta functions

- In (renormalisable) QFT the beta function encodes the dependence of the coupling parameter g on the energy (or distance) scale μ :
$\alpha_{i}:=\frac{g_{i}^{2}}{4 \pi}$

$$
\beta(\alpha)=\frac{1}{3 \pi} \alpha^{2}
$$

$$
\beta(g)=\frac{\partial g}{\partial \log \left(\mu^{2}\right)}
$$

- Beta function of QED (1-loop): $\beta(\alpha)=\frac{1}{3 \pi} \alpha^{2}$
* The coupling increases with energy scale
* The coupling decreases with larger distances
- Infinite range, Coulomb potential: $V(r) \propto \frac{1}{r}$

Beta functions

- In (renormalisable) QFT the beta function encodes the dependence of the coupling parameter g on the energy (or distance) scale μ :
$\alpha_{i}:=\frac{g_{i}^{2}}{4 \pi}$

$$
\beta(\alpha)=\frac{1}{3 \pi} \alpha^{2} \quad \beta(g)=\frac{\partial g}{\partial \log \left(\mu^{2}\right)}
$$

- Beta function of QED (1-loop): $\beta(\alpha)=\frac{1}{3 \pi} \alpha^{2}$
* The coupling increases with energy scale
* The coupling decreases with larger distances
\rightarrow Infinite range, Coulomb potential: $V(r) \propto \frac{1}{r}$
- Beta function of QCD (1-loop): $\beta\left(\alpha_{s}\right)=-\left(\frac{11 N_{C}-2 N_{f}}{12 \pi}\right) \alpha_{s}^{2}$
\Rightarrow The coupling decreases with energy scale, if $N_{C}=3, \quad N_{f} \leq 16$
- Asymptotic freedom
* The coupling increases with larger distances
- Confinement, string potential: $V(r) \approx \sigma \cdot r$ with tension $\sigma \approx 1 \mathrm{GeV} / \mathrm{fm}$

QCD and asymptotic freedom

Nobel prize 2004

- Theory:
* Renormalisation group equation (RGE)
* Solution of 1-loop equation
* Running coupling constant

$$
\begin{aligned}
& \alpha_{s}\left(Q^{2}\right)=\frac{\alpha_{s}}{1+\alpha_{s}\left(\mu^{2}\right.} \\
& \alpha_{s}\left(Q^{2}\right)=\frac{1}{\beta_{0} \ln \left(\frac{Q^{2}}{\Lambda^{2}}\right)}
\end{aligned}
$$

$$
\alpha_{s}\left(\mu^{2}\right)
$$

- What happens at large distances?
$\rightarrow Q^{2} \rightarrow 0$?
* Cannot be answered here! For $\mathbf{Q}^{2} \rightarrow \Lambda^{2}$ perturbation theory not applicable anymore!

$$
\beta_{0}=\frac{33-2 \cdot N_{f}}{12 \pi}
$$

D. Politzer

* Asymptotic freedom
* Perturbative methods usable

Running coupling constant

$$
\alpha_{s}\left(Q^{2}\right)=\frac{1}{\beta_{0} \ln \left(\frac{Q^{2}}{\Lambda^{2}}\right)}
$$

with Λ typically $\approx 200-300 \mathrm{MeV}$

Non-perturbative regime

QCD potential grows linearly with larger distances:
$V=\sigma \cdot r \approx 1 \mathrm{GeV} / \mathrm{fm} \cdot r$
\rightarrow No free quarks (or gluons)
\rightarrow Confinement

pre-LHC
July 2009
$\Delta \Delta$ Deep Inelastic Scattering

- - $\mathrm{e}^{+} \mathrm{e}^{-}$Annihilation

咽 Heavy Quarkonia

Asymptotic freedom
$\begin{array}{llll}\mathbf{0 . 1} & 0.3 & \mathbf{1} & \mathbf{1 0} \\ & & \mathbf{Q}[\mathbf{G e V}]\end{array}$

So what do we expect to see?

- Well not quarks (or gluons) thanks to confinement
- Searches for particles with non-integer charge unsuccessful

How to see "hypothetical" quarks?

Leading order:
Quark-Antiquark partons showing up in opposite event hemispheres with energy fractions:

$$
x_{1}=\frac{2 E_{q}}{\sqrt{s}} \quad x_{2}=\frac{2 E_{\bar{q}}}{\sqrt{s}} \quad 0 \leq x_{1}, x_{2} \leq 1
$$

How to see "hypothetical" quarks?

Leading order:
Quark-Antiquark partons showing up in opposite event hemispheres with energy fractions:

$$
x_{1}=\frac{2 E_{q}}{\sqrt{s}} \quad x_{2}=\frac{2 E_{\bar{q}}}{\sqrt{s}} \quad 0 \leq x_{1}, x_{2} \leq 1
$$

quark

How to see "hypothetical" quarks?

Leading order:
Quark-Antiquark partons showing up in opposite event hemispheres with energy fractions:

$$
x_{1}=\frac{2 E_{q}}{\sqrt{s}} \quad x_{2}=\frac{2 E_{\bar{q}}}{\sqrt{s}} \quad 0 \leq x_{1}, x_{2} \leq 1
$$

quark

Gluon emission:

$$
\int \alpha_{\mathrm{s}} \frac{d E}{E} \frac{d \theta}{\theta} \gg 1
$$

How to see "hypothetical" quarks?

Leading order:
Quark-Antiquark partons showing up in opposite event hemispheres with energy fractions:

$$
x_{1}=\frac{2 E_{q}}{\sqrt{s}} \quad x_{2}=\frac{2 E_{\bar{q}}}{\sqrt{s}} \quad 0 \leq x_{1}, x_{2} \leq 1
$$

Gluon emission:

$$
\int \alpha_{\mathrm{s}} \frac{d E}{E} \frac{d \theta}{\theta} \gg 1
$$

How to see "hypothetical" quarks?

Leading order:
Quark-Antiquark partons showing up in opposite event hemispheres with energy fractions:

$$
x_{1}=\frac{2 E_{q}}{\sqrt{s}} \quad x_{2}=\frac{2 E_{\bar{q}}}{\sqrt{s}} \quad 0 \leq x_{1}, x_{2} \leq 1
$$

Gluon emission:

$$
\int \alpha_{\mathrm{s}} \frac{d E}{E} \frac{d \theta}{\theta} \gg 1
$$

At low scales:

$$
\alpha_{\mathrm{s}} \rightarrow 1
$$

How to see "hypothetical" quarks?

Leading order:
Quark-Antiquark partons showing up in opposite event hemispheres with energy fractions:

$$
x_{1}=\frac{2 E_{q}}{\sqrt{s}} \quad x_{2}=\frac{2 E_{\bar{q}}}{\sqrt{s}} \quad 0 \leq x_{1}, x_{2} \leq 1
$$

Gluon emission:

$$
\int \alpha_{\mathrm{s}} \frac{d E}{E} \frac{d \theta}{\theta} \gg 1
$$

At low scales:

$$
\alpha_{\mathrm{s}} \rightarrow 1
$$

The look of two quarks

The look of two quarks

BUT initially cms energy too small for such clear pictures! Hadronisation with typical energies of $\Lambda_{\mathrm{acD}} \approx 330 \mathrm{MeV}$ smears out the partonic structure.

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{qq}$ at low energy

Increasing cms energy:

Examine the energy flow

 Inside the event\rightarrow define sphericity S
\rightarrow compare to other models than QCD

$$
S=3 \sum_{i}\left(p_{\mathrm{T} i}^{2}\right) / 2 \sum_{i}\left|\vec{p}_{i}\right|^{2}
$$

(not safe for pQCD)

So what do we expect to see?

- Well not quarks (or gluons) thanks to confinement
- Searches for particles with non-integer charge unsuccessful
- Examine distribution of energy flow
* event shapes: continuous measure of energy flow
* jets: integer quantity counting the number of "peaks" in energy flow

So what do we expect to see?

- Well not quarks (or gluons) thanks to confinement
- Searches for particles with non-integer charge unsuccessful
- Examine distribution of energy flow
* event shapes: continuous measure of energy flow
* jets: integer quantity counting the number of "peaks" in energy flow
- Separation not strict:
* can subdivide event shape distributions into say 2-jet and multi-jet region
* can increase jet resolution (decrease jet radius) parameter to find value when event changes from having n jets to $\mathrm{n}+1 \rightarrow$ continuous measure, e.g. y_{23} in $\mathrm{e}+\mathrm{e}-$

Shapes

Investigate the energy/momentum flow in an event

Event Shapes

Thrust minor
Redefine to get: $\tau \equiv 1-T$

$$
T=\max _{\vec{n}_{T}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}_{T}\right|}{\sum_{i}\left|\overrightarrow{p_{i}}\right|}
$$

linear ~ dijet $\tau \rightarrow 0$
spherical ~ multijet

$$
\tau \rightarrow 1 / 2
$$

$\longrightarrow 0$ in LO dijet case

Event Shapes

Originally:

Event Shapes in $\mathrm{e}^{+} \mathrm{e}^{-}$(and ep) Played a key role in the discovery of the gluon at DESY in 1979!

Old but still-used definition since collinear and infrared safe:
Thrust S. Brandt et al., PL12 (1964),
E. Farhi, PRL39 (1977).

Thrust minor

$$
\begin{gathered}
\text { linear } \sim \text { dijet } \\
\tau \rightarrow 0
\end{gathered}
$$

spherical ~ multijet

$$
\tau \rightarrow 1 / 2
$$

$\longrightarrow 0$ in LO dijet case

Event Shapes

Originally:
Event Shapes in $\mathrm{e}^{+} \mathrm{e}^{-}$(and ep)
Played a key role in the discovery of the gluon at DESY in 1978!

Old but still-used definition since collinear and infrared safe:
Thrust S. Brandt et al., PL12 (1964),
E. Farhi, PRL39 (1977).

At LHC: Transverse (to beam pipe) global thrust
\rightarrow In praxis, need to restrict rapidity range: $|\boldsymbol{\eta}|<\boldsymbol{\eta}_{\text {max }} \rightarrow$
Transverse central thrust

Thrust minor

$$
T_{\perp}=\max _{\vec{n}_{T}} \frac{\sum_{i}\left|\overrightarrow{p_{\perp}, i} \cdot \overrightarrow{n_{T}}\right|}{\sum_{i} P_{\perp}, i}
$$

spherical \sim multijet

$$
\tau \rightarrow 2 / \pi
$$

$\longrightarrow 0$ in LO dijet case

Event Shapes for pp collisions

At LHC:

Transverse central thrust

Thrust minor

$$
T_{\perp}=\max _{\vec{n}_{T}} \frac{\sum_{i}\left|\vec{p}_{\perp, i} \cdot \vec{n}_{T}\right|}{\sum_{i} p_{\perp, i}}
$$

$$
\text { linear } \sim \text { dijet }
$$

spherical ~ multijet

$$
\tau \rightarrow 0
$$

$$
\tau \rightarrow 2 / \pi
$$

$\longrightarrow 0$ in LO dijet case

So how to see gluons now?

Leading order:

Quark-Antiquark partons showing up in opposite event hemispheres with energy fractions:

$$
x_{1}=\frac{2 E_{q}}{\sqrt{s}} \quad x_{2}=\frac{2 E_{\bar{q}}}{\sqrt{s}} \quad 0 \leq x_{1}, x_{2} \leq 1
$$

So how to see gluons now?

Leading order:

Quark-Antiquark partons showing up in opposite event hemispheres with energy fractions:

$$
x_{1}=\frac{2 E_{q}}{\sqrt{s}} \quad x_{2}=\frac{2 E_{\bar{q}}}{\sqrt{s}} \quad 0 \leq x_{1}, x_{2} \leq 1
$$

Real correction:

Additional gluon emission (bremsstrahlung) \rightarrow search for 3-"jet" events

$$
\frac{d^{2} \sigma_{q \bar{q} g}}{d x_{1} d x_{2}} \propto \frac{\alpha_{s}}{2 \pi} \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)}
$$

- Singularities for

$$
\Rightarrow x_{1} \text { or } x_{2} \rightarrow 1 \text { : collinear gluon } \theta_{g q} \rightarrow 0
$$

$\Rightarrow \quad x_{1}$ and $x_{2} \rightarrow 1$: soft gluon $E_{g} \rightarrow 0$

The hunt for the gluon

Theory concerns:

- Small-angle and soft emissions \rightarrow huge corrections
* Real singularities must be cancelled against virtual corrections
- Large-angle emissions \rightarrow moderate corrections, 3-jet events
- Partonic degrees of freedom: BAD, not observable
- Observables must be: insensitive to collinear or soft gluon emissions Real correction:
Additional gluon emission (bremsstrahlung) \rightarrow search for 3-"jet" events

$$
\frac{d^{2} \sigma_{q \bar{q} g}}{d x_{1} d x_{2}} \propto \frac{\alpha_{s}}{2 \pi} \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)}
$$

- Singularities for
$\# x_{1}$ or $x_{2} \rightarrow 1$: collinear gluon $\theta_{g q} \rightarrow 0$
$\Rightarrow \quad x_{1}$ and $x_{2} \rightarrow 1$: soft gluon $E_{g} \rightarrow 0$

Gluon discovery 1979

Experimental concerns:

- Must have large enough cms energy: PETRA: 13, 17, 27.4 GeV
- Must have algorithm to identify candidate events

First "3-jet" event from TASSO presented by B. Wiik at Neutrino '79 in Bergen

50 years of QCD arXiv:2212.11107

Later confirmed by measurements also from JADE, Mark J and PLUTO i.a. using event shapes

G. Wolf: talk at Lepton-Photon 1979
J. Ellis: CERN Courier Volume 49, Number 6, July-August 2009

Jets in OPAL

qq 2-jet event

3-Jet events 1979-2010

Jets even clearer visible ... but what exactly is part of a jet?

PLUTO,1979
$\mathbf{e}^{+} \mathbf{e}$; $\sqrt{\text { s }}=30 \mathrm{GeV}$
Multiplicity ~ 10

CMS, 2010
$\mathrm{pp}, \sqrt{\mathbf{s}}=7000 \mathrm{GeV}$
Multiplicity ~ 100

Need better definition: Jet algorithm!

First "jet" definition: $\mathrm{e}^{+}{ }^{-}$

Sterman and Weinberg 1977:

- A final state is classified as a 2-jet event, if all but a fraction ε of the total energy is contained in a pair of cones of half-angle δ.
- Minimal energy criterion: ε Jet cone size: $\boldsymbol{\delta}$
- Collinear and infrared safe
- Impractical for multi-jet states
* JADE algorithm

First jets in hadron collisions

Di-jet event with clearly separated energy depositions

'Jet algorithm' based on cell structure of the calorimeters (UA1 \& UA2)
UA1 later also cone algorithm!

Fig. 6. Inclusive jet production cross section. The solid line (ref. [6]) uses $\Lambda=0.5 \mathrm{GeV}$ while $\Lambda=0.15 \mathrm{GeV}$ would bring the calculated rates in better agreement with the data. However various uncertainties preclude a determination of Λ from the data [13].

UA2, PLB 118 (1982)

More bundles of particles

$1^{\text {st }}$ cone algorithm

- UA1 Collaboration at CERN SppS, PLB 123 (1982) 115:
* Cluster algorithm around cells with more than 2.5 GeV energy ('seed')
* Distance criterium in (pseudo-)rapidity and azimuthal angle wrt. cell (or jet) \rightarrow cone in (Φ, η) space
* 4-vector addition to combine
* Further criteria to add less energetic cells

$$
R=\sqrt{(\Delta \phi)^{2}+(\Delta \eta)^{2}}
$$

JADE algorithm

- JADE Collaboration, ZPhysC 33 (1986) 23:
* Algorithm with sequential recombination
* For $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ no treatment of proton remainder
* 1. Define metric for distance between two objects i and j via their 4 -vectors
* 2. Calculate the distances for all pairwise combinations \mathbf{i}, \mathbf{j}
* 3. Compare the smallest distance to a threshold $y_{\text {cut }}$
* 4. If smaller \rightarrow combine both objects i, j to a new one \rightarrow iterate step 2
* 5. If larger \rightarrow stop algorithm and declare all remaining 4-vectors to jets!

$$
y_{i j}^{\mathrm{J}}=\frac{2 E_{i} E_{j}\left(1-\cos \left(\theta_{i j}\right)\right)}{E_{\mathrm{vis}}^{2}}
$$

$$
y_{i, j ; \min }<y_{\mathrm{cut}}
$$

JADE vs. \boldsymbol{k}_{T} Algorithm

Not unsafe, but soft wide-angle radiation attributed to the same JADE jet! Leads to:

- larger hadronisation corrections
- not resummable
(a)

(b)

Figure 4: A three-jet final state and the assignment of particles to the first (solid), second (dotted) and third (dashed) jets according to the (a) JADE and (b) k_{\perp} algorithms.

$k_{T} / D u r h a m ~ a l g o r i t h m ~$

- Catani, Dokshitzer, Olsson, Turnock, Webber, PLB 269 (1991) 432:
- Algorithm with sequential recombination
* For $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ no treatment of proton remainder
* 1. Define metric for distance between two objects i and j via their 4 -vectors
* 2. Calculate the distances for all pairwise combinations \mathbf{i}, j
* 3. Compare the smallest distance to a threshold $\mathbf{y}_{\text {cut }}$
* 4. If smaller \rightarrow combine both objects i, j to a new one \rightarrow iterate step 2

н 5. If larger \rightarrow stop algorithm and declare all remaining 4-vectors to jets!

$$
y_{i j}^{\mathrm{k}_{\mathrm{T}}}=\frac{2 \min \left(E_{i}^{2}, E_{j}^{2}\right)\left(1-\cos \left(\theta_{i j}\right)\right)}{E_{\mathrm{vis}}^{2}} \quad y_{i, j ; \min }<y_{\mathrm{cut}}
$$

Tools in particle physics: Jets

Jet algorithms

Primary goal:

Good correspondence among:

- Detector measurements
- Particles in final state and
- "hard" partons

Two classes of algorithms:

1. Cone algorithms: "Geometrical attribution of objects to the direction of largest energy flow in an event (First choice at hadron colliders)
2. Sequential recombination: Iterated combination of closest neighbors among all pairs of objects
(First choice at ${ }^{+} e^{-} \&$ ep colliders)

Desiderata - Theory

- Jet Algorithm Desiderata (Theory):

\rightarrow Infrared safety

* Collinear safety
* Longitudinal boost invariance (recombination scheme!)
* Boundary stability (\rightarrow 4-vector addition, rapidity y)
* Order independence (parton, particle, detector)
* Ease of implementation (standardized public code?)

See also:

"Snowmass Accord", FNAL-C-90-249-E
Tevatron Run II Jet Physics, hep-ex/0005012
Les Houches 2007 Tools and Jets Summary, arXiv:0803.0678

Desiderata - Experiment

- Jet Algorithm Desiderata (Experiment):

\rightarrow Computational efficiency and predictability (use in trigger?, reconstruction times?)

* Maximal reconstruction efficiency (no dark jets)
* Minimal resolution smearing and angular biasing
* Insensitivity to pile-up (mult. collisions at high luminosity ...)
* Ease of calibration
* Detector independence
- Fully specified (details?, code?)
* Ease of implementation (standardized public code?)

Collinear safety

Collinear safe jet alg.
a)

jet 1
b)

$\alpha_{s}^{n} \times(-\infty)$
$\alpha_{s}^{n} \times(+\infty)$
Infinities cancel

Collinear unsafe jet alg
c)
d)

$\alpha_{s}^{n} \times(-\infty)$
jet 2

Infinities do not cancel

Infrared safety

Iterative cone with Split/Merge:

\rightarrow not all objects end in jets, e.g. if no starting cone close by (dark Jets)
\rightarrow collinear unsafe because of minimal pT on cone seeds
\rightarrow infrared unsafe ...

Trial to fix issue: MidPoint Cone \rightarrow Investigate add. all middle points between seeds \rightarrow also unsafe, becomes apparent only for more complex topology Discovered rather late: Real safe algorithm Seedless Infrared-Safe Cone (SISCone) \rightarrow rarely used because of 2 orders of magnitude larger computing needs

